burster

THE MEASUREMENT SOLUTION

YOUR INDIVIDUAL PRODUCT INFORMATION

precision, quality and flexibility. This has made the German medium-sized enterprise one of the world's foremost suppliers of sensor signal processing and process monitoring systems.

Globally, burster is in contact with more than 140,000 people in industry and R&D. We are partners for mechanical and plant engineering and automation, the automotive industry and its suppliers, electrical and electronic engineering, the chemicals industry, e-mobility as well as many other sectors and future or niche markets such as medical engineering, biotechnology and robotics.

SENSORS

TORQUE SENSORS

NON-ROTATING APPLICATIONS

TYP**8625**

Precision torque sensor

- Principle: Non-rotating
- Measuring range: 0.01 N·m ... 200 N·m
- Measurement accuracy: ≤ 0.05 % F.S.

TYP8630

TYP8627

Precision torque sensor

- Principle: Non-rotating
- Measuring range: 2 N·m ... 200 N⋅m
- Measurement accuracy: ≤ 0.1 % F.S.

TYP8631

Precision torque sensor

- Principle: Non-rotating
- Measuring range: 5 N·m ... 200 N·m
- Measurement accuracy: ≤ 0.1 %

Torque sensor

- Principle: Non-rotating
- Measuring range: 500 Nm ... 5000 Nm
- Measurement accuracy: ≤ 0.1 % F.S.
- Signal output: 0.5 mV/V; 1 mV/V ...

ROTATING APPLICATIONS

TYP8661

Precision torque sensor

- Principle: Rotating
- Measuring range: ±0.02 N⋅m ... ±1000 N⋅m
- Measurement accuracy: ≤ ±0.05 %
- Output signal: ±10 V (optional ±5 V or USB)

TYP8656

Precision torque sensor

- Principle: Rotating
- Measuring range: 1 N·m ... 100 N·m
- Measurement accuracy: 0.2 %

TYP**8655**

Torque sensor

- Principle: Square, rotating, contactless
- Measuring range: 1 N·m ... 160
- Measurement accuracy: 0.25 %

TYP86403;86413;86423 Torque sensors

Principle: Rotating

- Measuring range: 1 Nm ...
- Measurement accuracy: ≤ ±0.1
- Signal output: 0.5 mV/V; 1

MULTI-COMPONENT SENSORS

TYP**8565**

Load cell and torque sensor – X/Y/Z

■ Flexibly configurable 3 forces / 3 torques (Fx / Fy / Fz - Mx / My / Mz) Robot flange according to DIN ISO 9049-1

mV/V ...

High-Precision Torque Sensor

for non-rotating applications

MODEL 8625

burster TEDS

NEW immune to side loads thanks to support bearings

8625 with bracket

Highlights

- Measurement ranges of 0 ... 0.01 N·m to 0 ... 200 N·m
- Linearity error as low as from $\leq 0.05 \%$ F.S.
- Standardized output signal
- Tare function, filter and average values configurable

Options

- Output signal ±10 V / USB
- burster TEDS
- Bracket or flange adapter offers choice of mounting options
- Immune to side loads thanks to built-in support bearings
- Dual-range model

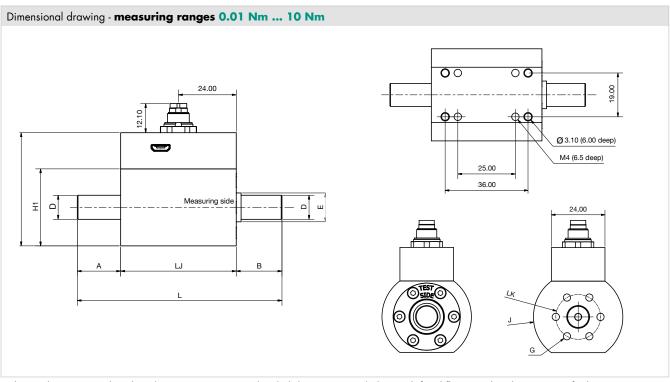
Applications

- Test setups for precision mechanics
- Measuring the frictional torque ob bearings
- Measuring the torques applied to vehicle control elements and knobs
- Reference sensor in calibration systems

Product description

This high precision torque sensor is designed for both static and dynamic measurements on non-rotating applications. It is particularly suitable for torque measurements on, for instance, extremely small electrical actuating drives and micro-mechanical actuator elements, or for measuring reaction torques e.g. on micro-motors.

The high accuracy of measurement also makes this sensor ideal for use as a reference in many fields of industrial manufacture as well as laboratory research and development projects. Not containing any rotating parts, it requires no maintenance if properly used.


The strain-gage based sensor's modular design allows precise configuration for the desired application. With the integrated amplifier option, the sensor directly supplies a voltage signal of 0 ... $\pm 10~\text{V}$ that is proportional to the torque. The sensor can be configured via the micro-USB interface, providing access to, for example, a filter frequency setting, averaging, and a tare function. Measurements via USB in addition to the voltage output are available with the USB measurement option. The sensor comes with the DigiVision software for performing measurements and data archiving, with drivers additionally available e.g. for LabVIEW. Integration into custom software is possible via DLL

The burster TEDS option (electronic data sheet, memory chip with sensor-specific data) allows rapid configuration of compatible evaluation units (instrumentation amplifier, indicator, ...).


Technical Data 8625	-	4010-VXXXXX	4020-VXXXXX	4050-VXXXXX	4100-VXXXXX	4200-VXXXXX	4500-VXXXXX	5001-VXX
Measuring range calibrated in N·m rom 0		±0.01 N·m	±0.02 N⋅m	±0.05 N⋅m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±1 N·m
Accuracy								
elative non-linearity		0.15 % F.S.	0.15	% F.S.		0.05 9	% F.S	
elative hysteresis		0.15 % F.S.	3.1	, 01.0.	0.1 %		,01.0.	
olerance of sensitivity		0.2 % F.S.			0.1 %			
Naximum limit axial load	[N]	0.2 /0			50	· · · · · ·		
Maximum limit radial load	[N]			1		1.5	2	3
Spring constant	[N·m/rad]	5	8	10	18	41	115	261
Mass moment of inertia	[10-6	0.022	0.026	0.059	0.749	0.812	0.886	1.15
measuring side	kg*m²]		0.020	0.039	0.749	0.612	0.000	1.13
lectrical values witho	out ampli							
Sensitivity		0.25	mV/V			0.5 mV/V		
Bridge resistance full bridge)					1000Ω			
Excitation voltage					5 V (max. 10 V)			
invironmental condi	tions wi	thout amplifier			o y (max. 10 y)			
Cange of operating and nominal temperature				-:	20 °C +80 °C	C		
Sensitivity of emperature effects		on the ze on the se	ero point 0.020 ensitivity 0.015	% F.S./K % F.S./K		0.015 % 0.010 %		
lectrical values with	amplifier	/USB						
Rated supply voltage range				5 30) V DC (or 5 V v	ia USB)		
OC power consumption					approx. 1 W			
Output voltage at £ rated torque					±10 V			
Output resistance					< 500 Ω	•		
nsulation resistance				zero	(binding capak	oility)		
3 dB cut-off frequency					5000 Hz			
Ripple					<50 mV _{ss}			
Control signal Invironmental condi	ione wi	th amplifier/IIS	D		10.00 V DC			
Range of operating and nominal temperature	nons wi	in ampimer/03	Ь		0 °C +60 °C			
Sensitivity of temperature effects			ero point 0.020 ensitivity 0.015			0.015 % 0.010 %		
Mechanical values			,					
Dynamic overload safe				recommend	led 70 % of non	ninal torque		
Max. operation torque				150 % of 1	nominal torque (≥ 0.2 N·m)		
Breakaway torque				300	% of nominal to	rque		
Alternating load				<i>7</i> 0	% of nominal to	que		
Other								
Material			ade of anodize strength alumini			Shaft: steel s	hell 1.4542	
Protection class				ace	c. EN 60529, IF			
Weight	[g]		150			180		190
Geometry								
	[mm]	5	9	65	40	8.	5	
J	[mm]				48			
1	[mm]				47			
11 × 1	[mm]				32			
Ø J	[mm]	4	~A	4~4	40	81	.A	
) .K	[mm]	4(g6	6g6	20	8r	IU	
Х/В	[mm]	E	.5	8	20	1	8	
Э Э	[mm]	<u>J</u>		U	M4	<u> </u>		
nstallation	[iiiii])			and the feet		
nstallation instructions		Ple	ase refer to our	operating instru	al and radial for actions for detail ing as a means	ed information (www.burster.co	m).

Technical Data

8625	-	5002-VXXXXX	5005-VXXXXX	5010-VXXXXX	5020-VXXXXX	5050-VXXXXX	5100-VXXXXX	5200-VXXX
Measuring range calibrated in N·m from 0		±2 N⋅m	±5 N⋅m	±10 N·m	±20 N⋅m	±50 N⋅m	±100 N·m	±200 N·r
Accuracy								
Relative non-linearity					0,05 % F.S.			
Relative hysteresis					0,1 % F.S.			
Tolerance of sensitivity					0,1 % F.S.			
Maximum limit axial load	[N]	50	20	00	1500	3000	4000	8000
Maximum limit radial load	[N]	6	15	30	40	80	150	275
Spring constant	[N·m/rad]	304	1242	2604	5500	13000	28000	61000
Mass moment of inertia	[10-6	1.17	1.44	2.2	22	24	123	139
measuring side	kg*m²]		1.44	2.2	22	24	120	107
Electrical values withou	out amplif	ier						
Sensitivity					1 mV/V			
Bridge resistance (full bridge)					1000Ω			
Excitation voltage					5 V (max. 10 V)			
Environmental condi	tions wit	hout amplifier			, (axi. 10 ,)			
Range of operating and		Julianianianianianianianianianianianianiani			20.00			
nominal temperature				-2	20 °C +80 °C	•		
Sensitivity of temperature effects					ero point 0.015 ensitivity 0.01 %			
Electrical values with	amplifier,	/USB						
Rated supply voltage range				5 30	V DC (or 5 V v	ia USB)		
DC power consumption					approx. 1 W			
Output voltage at ± rated torque					±10 V			
Output resistance					< 500 Ω			
Insulation resistance				zero	(binding capab	ility)		
-3 dB cut-off frequency					5000 Hz			
Ripple					<50 mV _{ss}			
Control signal	•	l 1.6. (1.10.5			10.00 V DC			
Environmental condi Range of operating and nominal temperature	tions wit	h amplitier/USE			0 °C +60 °C			
Sensitivity of temperature effects					ro point 0.015 nsitivity 0.010			
Mechanical values					,	•		
Dynamic overload safe				<i>7</i> 0 9	% of nominal tor	que		
Max. operation torque					% of nominal to	•		
Breakaway torque					% of nominal to	•		
Alternating load				70 9	% of nominal tor	que		
Other								
Material			Housing	: made of anodi	zed aluminium;	Shaft steel shell	1.4542	
Protection class				acc	:. EN 60529, IP			I
Weight	[g]		190		480	495	1100	1140
Geometry								
L	[mm]		85		10			36
LJ	[mm]		48		5			5
H	[mm]		47		6			9
H1 ~ .	[mm]	32 48					4	
ØJ	[mm]						0	
D	[mm]	8h		10h6	15	-		g6
LK A /B	[mm]		20		2		- 4	
A/B G	[mm]		18 M4		2			5,5
	[mm]		/V\4		M	U	N	18
Installation								

Holes on the sensor underside only up to 10 N.m. For detailed dimensions, including with fitted flange or bracket, you can find sensor CAD data on our website www.burster.com.

Electrical values

7-pin miniature connector, additionally micro-USB interface for configuration/measurement (Option, USB connection cable included)

Viring Code depends o	on the options selected	
Pin	Assignment without electronic	Assignment with electronic
1	Bridge supply -	Supply GND
2	Bridge supply +	Supply +5 30 V
3	Shield	Shield
4	Signal +	Output signal ±10 V
5	Signal -	Output signal GND
6	TEDS I/O (option) / NC	Control signal
7	TEDS GND (option) / NC	Switching between ranges (option)

Accessories

Flange-mounted model

The flange adapter allows easy integration of the sensor in existing equipment with a flange connection. When ordered with the sensor, the flange adapter comes prefitted; please refer to order code.

Alternatively it can be ordered separately as an accessory.

Please refer to the accessories data sheet 8600-Z00X

Integrated amplifier with USB interface

This sensor model comes with a USB port in addition to the 0 ... \pm 10 V output.

Two versions are available:

- ±10 V output signal, USB used solely for configuration
- ±10 V output signal, USB used for both configuration and measurement

When a USB-based measurement is launched, the analog output signal is disabled because it is not possible to use both forms of output simultaneously.

With both versions, the measurement signal can be tared, averaged or filtered. These functions can be set up and/or activated via USB and the free version of DigiVision.

Dual range

With integrated amplifier and from the 2 Nm measuring range and up, the dual-range option can be selected. The following subdivisions are available:

Graduation:	1:2	1:4	1:5
	Upper so	cale value of sec	cond range
2 Nm	1 Nm	0,5 Nm	-
5 Nm	-	-	1 Nm
10 Nm	5 Nm	-	2 Nm
20 Nm	10 Nm	5 Nm	-
50 Nm	-	-	10 Nm
100 Nm	50 Nm	-	20 Nm
200 Nm	100 Nm	50 Nm	-

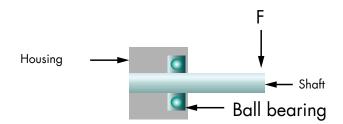
The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin 7.

Bracket-mounted model

The bracket provides a quick-to-fit and stable fixture for the sensor. When ordered with the sensor, the bracket comes pre-fitted; please refer to order code

Alternatively it can be ordered separately as an accessory.

Please refer to the accessories data sheet 8600-Z00X

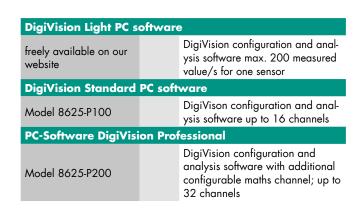

Metal-bellows couplings

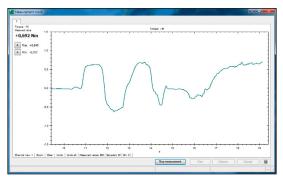
Metal-bellows couplings provide optimum misalignment correction. We recommend torsionally rigid metalbellows couplings. These couplings feature extremely high torsional stiffness under applied torque and extremely low restoring forces. From measuring range 20 N·m the metal-bellows couplings model 8695 can be used with keyways.

Please refer to the accessories data sheet 8695.

Support bearing at the test end

The support bearing option significantly increases the sensor's side load immunity. Especially in manually operated applications, correct application of the torque without parasitic loads usually cannot be guaranteed.


The support bearing largely separates these forces from the measuring element, making measurement results much more reproducible.



DigiVision configuration and analysis software

Features

- Can be used to actuate tare function, with value stored in sensor
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8661) available with standard version

Accessories

Order code	
9900-V594	Mating connection 7 pin
9900-V596	Mating connection 90°-angle
99594-000A-0150030	Connecting cable, length 3 m, other end free
99596-000A-0150030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99141-594A-0150030	Connecting cable for burster desktop instruments with 12 pin socket, length 3 m
99209-586C-0510030	For model 9235, model 7281 and model 9311
9900-K358	Micro USB cable, length 1.8 m
8625-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8625-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
8600-Z00X	Flange-mounted or bracket-mounted, see accessories data sheet 8600-Z00X

Calibration

Manufacturer Calibration Certificate (WKS)

Special calibration for clockwise or/and counter clockwise direction torque, in 20% steps of range up and down.

DAkkS Calibration Certificate

DAkkS calibration certificate per DIN 51309, clockwise and/or anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.

Order Code

	Meas	uring I	Range			Co	de								
	0	±0.0	01 N·m		4	0	1	0							
	0	±0.0	02 N·m		4	0	2	0	ĺ						
	0	±0.0	05 N·m		4	0	5	0							
	0	±0.1	l N∙m		4	1	0	0							
	0	±0.2	2 N⋅m		4	2	0	0							
	0	±0.5	5 N⋅m		4	5	0	0	ļ						
	0		N⋅m		5	0	0	1							
	0	±2	N⋅m		5	0	0	2							
	0		N⋅m		5	0	0	5							
	0		N⋅m		5	0	1	0							
	0		N⋅m		5	0	2	0							
	0		N⋅m		5	0	5	0							
		±100	N⋅m		5	1	0	0					0. 1		
	0	±200	N⋅m		5	2	0	0			0	0	Standar 0	d 0	0
8	-	2	5							v	U	U	0	U	0
<u> </u>	6		3							<u> </u>					U
Stand	ard se	ensor													
Stan Dual	dard se l-range l-range	ensor ensor, or version, version, version	, gradu , gradu	ation 1: ation 1:	10 from 5 from	measuri	ing rang	ge 2 N·r	m		0 2 3 4				
Stan Dual Dual Dual With With	dard se l-range l-range l-range nout ad	version version version version ditional	, gradu , gradu , gradu support	ation 1: ation 1: ation 1:	10 from 5 from 4 from gs on th	measuri measuri ie meas	ing rang	ge 2 N·r ge 2 N·r	m		2	0			
Stan Dual Dual With With	dard so l-range l-range l-range nout ad n additi	version, version, version, version, ditional supposes als	, gradu , gradu , gradu support	ation 1: ation 1: ation 1: bearing	10 from 5 from 4 from gs on th	measuri measuri ne meas	ing rang	ge 2 N·r ge 2 N·r	m		2	0			
Stan Dual Dual Dual With With Outpu	l-range l-range l-range l-range nout ad n additi	version, version, version, version, ditional support of the control of the contro	, gradu , gradu , gradu support pport be	ation 1: ation 1: ation 1: bearings	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	0	0		
Dual Dual With With Outpu Outpu	l-range l-range l-range nout additi ut sign out volte out volte	version, version, version, version, ditional suparts age 10 vage 10 va	, gradu , gradu , gradu support pport be V incl. c V incl. L	ation 1: ation 1: ation 1: bearings carings configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	0	1		
Stan Dual Dual Dual With With Outpu Outpu Outp	l-range l-range l-range nout additi ut sign out volte out sign	version, version, version, version, ditional onal supage 10 age 10 al stand	, gradu , gradu , gradu support pport be V incl. c V incl. L ardized,	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	O 1	1 3		
Stan Dual Dual Dual With With Outpu Outpu Outp	l-range l-range l-range nout additi ut sign out volte out sign	version, version, version, version, ditional suparts age 10 vage 10 va	, gradu , gradu , gradu support pport be V incl. c V incl. L ardized,	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	O 1	1		
Stan Dual Dual Dual With With Outpu Outp Outp Outp	l-range l-range l-range l-range nout additi ut sign out volte out sign out sign	version, version, version, version, ditional onal supage 10 age 10 al stand	, gradu , gradu , gradu support pport be V incl. c V incl. L ardized,	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	0 1	1 3		
Stan Dual Dual Dual With With Outpu Outpu Outpu Outpu Outpu Outpu	l-range l-range l-range l-range nout additi ut sign out volte out sign out sign	version, ver	, gradu , gradu , gradu support poport be V incl. c V incl. L ardized, V with TE	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	0 1	1 3		
Stan Dual Dual Dual With With Outpu Outpu Outp Outp Outp	l-range l-range l-range l-range mout additi ut sign out volte out sign out sign out sign	version, version, version, version, ditional support of the second secon	, gradu , gradu , gradu support poport be V incl. c V incl. L ardized, V with TE	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	0 1	1 3	0	
Stan Dual Dual Dual With With Outpu Outp Outp Outp Outp Flan Both	l-range l-range l-range l-range l-range nout additi ut sign out volte out sign out sign ons round ge-mou	version, version, version, version, ditional support of the second secon	, gradu , gradu , gradu support pport be V incl. c V incl. L ardized, V with TE	ation 1: ation 1: ation 1: bearings carings configure JSB configure JSB configure	10 from 5 from 4 from gs on the non the r	measuri measuri ne meas neasurir	ing ranging rang	ge 2 N·r ge 2 N·r de	m		2	O 1	1 3		

High Precision Torque Sensor

for non-rotating applications

MODEL 8630

Model 8630 Flange-mounted

Model 8630 Bracked-mounted

Model 8630 with USB interface

Highlights

- Measuring ranges from 0 ... 2 N·m up to 0 ... 200 N·m
- Linearity error ≤ 0,1 % F.S.
- Internal square and external square
- Standardized output signal
- Tare function, filter and average values configurable
- Insensitive to side loads thanks to built-in support bearing

Options

- Output signal ±10 V / USB
- burster TEDS
- Bracket or flange adapter offers choice of mounting options
- Dual-range model

Applications

- Testing screw-fastening tools
- Logging data for specified release torques
- Measuring the tightening torque of screw connections
- Acquisition of breakage moments on screw caps

Product description

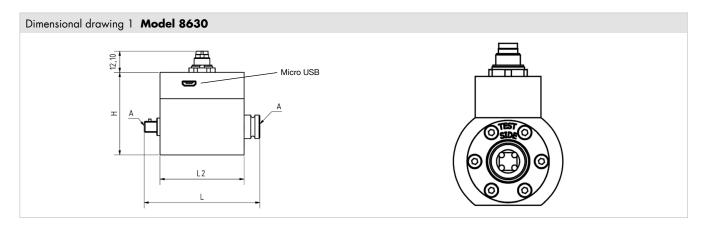
This high-precision torque sensor can be used to perform both static and dynamic measurements on non-rotating parts. The internal and external square drive design make this sensor especially easy to fit in existing or new screw-fitting applications.

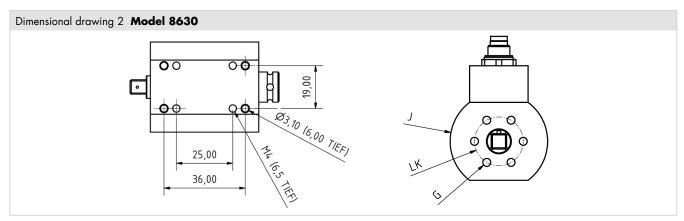
Quality assurance and monitoring of screw-fastening tools are just two applications that can take full advantage of sensor features such as USB port, built-in amplifier and side-load absorbing bearings.

With no rotating parts, this sensor needs no maintenance when used correctly.

Available accessories include mounting brackets and flange adapters, which enable quick, easy and practical integration of the sensor into existing or newly developed setups and test benches.

The strain-gauge based sensor's modular design allows precise configuration for the desired application.


With the integrated amplifier option, the sensor directly supplies a voltage signal of 0 ... \pm 10 V that is proportional to the torque. The sensor can be configured via the micro-USB interface, providing access to, for example, a filter frequency setting, averaging, and a tare function. Measurements via USB in addition to the voltage output are available with the USB measurement option. The sensor comes with the DigiVision software for performing measurements and data archiving, with drivers additionally available e.g. for LabVIEW. Integration into custom software is possible via DLL. Examples can be found on our website www.burster.com


The burster TEDS option (electronic data sheet, memory chip with sensor-specific data) allows rapid configuration of compatible evaluation units (instrumentation amplifier, indicator, ...).

8630		5002- VXXXXX	5005- VXXXXX	5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX
Measuring range calibrated in N·m								
from 0		±2	±5	±10	±20	±50	±100	±200
				Higher me	easuring ranges	on request.		
Accuracy								
Relative non-linearity					0.1 % F.S.			
Relative hysteresis					0.1 % F.S.			
Tolerance of sensitivity					0.1 % F.S.			
Maximum axial load	[N]	800	1000	1500	50	000	70	000
Maximum radial load	[N]		300		5	50	7:	50
Spring constant	[N·m/rad]	280	1070	2500	5880	14700	29400	68900
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]	0,57	0,73	0,9	12,15	13 <i>,7</i>	44,7	51,66
Electrical values wit	hout am	plifier / USB						
Bridge resistance (full bridge)					1000 Ω			
Excitation voltage					5 V			
Max. excitation voltage					10 V			
Environmental cond	itions w	ithout amplif	ier / USB					
Range of operating and nominal temperature				-	20 °C +80 °	С		
Sensitivity of emperature effects					zero 0.015 % F. Il value 0.010 %	•		
Electrical values wit	h amplif	ier/USB						
Rated supply voltage					5 30 V DC (or 5 V via USB	١		
range DC power consumption					approx. 1 W	1		
Output voltage at ± rated torque					±10 V			
Output resistance					< 500 Ω			
Insulation resistance				701	b (binding capal	ailita)		
-3 dB cut-off frequency				2610	5000 Hz	Jilliyj		
Ripple					< 50 mV _s			
Calibration signal					10.00 V DC			
Environmental cond	itions w	ith amplifier	/IISR		10.00 V DC			
Range of operating and nominal temperature		ampimer,	000	-	20 °C +60 °	С		
Sensitivity of temperature effects					zero 0.015 % F.: ul value 0.010 %			
Mechanical values				5		- //		
Dynanic overload safe				up to 7	0 % from nomin	al value		
Max. operation torque ≥0,2 N·m					% of nominal to			
Breakaway torque				300	% of nominal to	orque		
Alternating load					% of nominal to	•		
Other		5002	5005	5010	5020	5050	5100	5200
Material:		3002		Housing: m	ade of anodize ft: steel shell 1.4	d aluminium		3200
Protection class					c. EN 60529, II			
Weight	[g]		139	<u>uc</u>		19	33	54
, , -, g	[9]		,			• •	J.	- •

Geometrie

8630	-	5002- VXXXXX	5005- VXXXXX	5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX
L	[mm]		66			80		00
L2	[mm]		48		5	5	6	5
Н	[mm]		47		6	3	79	
ØJ	[mm]		40		55		70	
LK	[mm]		20		25		41	
Α	[mm]		6.3 (1/4")		10 (3/8")		12.5 (1/2")	
G	[mm]		M4		N	16	N	18
Mounting								
Mounting instructions		Do not exceed to and operation (Please refer to o Do not use the h	see technical do our operating in	ata). structions for det	tailed informatio		com.	

Holes on the sensor underside only up to 10 N.m. For detailed dimensions, including with fitted flange or bracket, you can find sensor CAD data on our website www.burster.com.

Electrical values

7-pin miniature connector, additionally micro-USB interface for configuration/measurement (Option, USB connection cable included)

Pin	Assignment without electronic	Assignment with electronic
1	Bridge supply -	Supply GND
2	Bridge supply +	Supply +5 30 V
3	Shield	Shield
4	Signal +	Output signal ±10 V
5	Signal -	Output signal GND
6	TEDS I/0 (option) / NC	Control signal
7	TEDS GND (option) / NC	Switching between ranges (option)

3055-008630EN-5699-071527

Flange-mounted model

The flange adapter allows easy integration of the sensor in existing equipment with a flange connection. When ordered with the sensor, the flange adapter comes pre-fitted; please refer to order code.

Alternatively it can be ordered separately as an accessory.

Please refer to the accessories data sheet 8600-Z00X.

Torque sensor with built-in USB port (option)

This sensor model comes with a USB port in addition to the $0 \dots \pm 10 \text{ V}$ output. Two versions are available:

- ± 10 V output signal, USB used solely for configuration
- ± 10 V output signal, USB used for both configuration and measurement

When a USB-based measurement is launched, the analog output signal is disabled because it is not possible to use both forms of output simultaneously.

With both versions, the measurement signal can be tared, averaged or filtered. These functions can be set up and/or activated via USB and the free version of DigiVision.

DigiVision configuration and analysis software

Features

- Can be used to actuate tare function, with value stored in sensor
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

DigiVision Light PC software

DigiVision configuration and analysis software max. 200 measured value/s for one sensor (freely available on our website)

DigiVision Standard PC software

DigiVison configuration and analysis software up to 16 channels

Model 8630-P100

PC-Software DigiVision Professional

DigiVision configuration and analysis software including maths functions; up to 32 Model 8630-P200

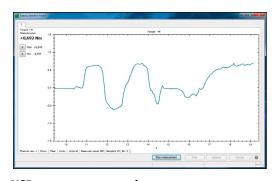
Bracket-mounted model

The bracket provides a quick-to-fit and stable fixture for the sensor. When ordered with the sensor, the bracket comes pre-fitted; please refer to order code.

Alternatively it can be ordered separately as an accessory.

Please refer to the accessories data sheet 8600-Z001.

Dual-range version



With integrated amplifier, the dual-range option can be selected. The following subdivisions are available:

1:2	1:4	1:5
Upper so	cale value of sec	ond range
1 Nm	0.5 Nm	-
-	-	1 Nm
5 Nm	-	2 Nm
10 Nm	5 Nm	-
-	-	10 Nm
50 Nm	-	20 Nm
100 Nm	50 Nm	-
	Upper so 1 Nm - 5 Nm 10 Nm - 50 Nm	Upper scale value of sec 1 Nm

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin 7.

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8661) available with standard version

Accessories

Order code	
9900-V594	Mating connection 7 pin
9900-V596	Mating connection 90°-angle
99594-000A-0150030	Connecting cable, length 3 m, other end free
99596-000A-0150030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99141-594A-0150030	Connecting cable for burster desktop instruments with 12 pin socket, length 3 m
99209-586C-0510030	Connecting cable for model 9235, model 7281 and model 9311, length 3 m
9900-K358	Micro USB cable, length 1.8 m
8630-Z003	Adapter internal square - internal square 1/4"
8630-Z004	Adapter internal square - internal square 3/8"
8630-Z005	Adapter internal square - internal square 1/2"
8630-Z006	Adapter external square - external square 1/4"
8630-Z007	Adapter external square - external square 3/8"
8630-Z008	Adapter external square - external square 1/2"
8630-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8630-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
8600-Z00X	Flange-mounted or Bracket-mounted, see accessories data sheet 8600-Z00X

Calibration

Manufacturer Calibration Certificate (WKS)						
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.					
DAkkS Calibration C	ertificate					
	DAkkS calibration certificate per DIN 51309, clockwise and/or anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.					

Order Code

	Meas	uring l	Range			Co	de								
	0	±2	N⋅m		5	0	0	2							
	0	±5	N·m		5	0	0	5							
	0	±10	N⋅m		5	0	1	0							
	0	±20	N⋅m		5	0	2	0							
	0	±50	N⋅m		5	0	5	0							
	0 .	±100	$N \cdot m$		5	1	0	0							
	0 .	±200	N·m		5	2	0	0				;	Standar	d	
											0	0	0	1	0
8	6	3	0	-	Х	х	Х	х	-	V		0			0
DuaDuaDuaOutpu	l-range l-range l-range of signe	version version version	ne meas , graduc , graduc , graduc	ation 1:5 ation 1:4 ation 1:2	5 from r 4 2		ng rang	e 5 N·m	1		0 2 3 4				
Outp	out volta	age 10	V incl. c	onfigura	ation US	SB							0		
			V incl. L		figuring	and me	easuring	USB							
Outp	out sign	al stand	ardized,	mV/V											
Outp	Output signal, mV/V with TEDS												4		
Versio	ns														
Inter	nal squ	are/Exte	ernal squ	Jare										1	
			nge-mou											5	
			. Bracke		ed									6	

High Precision Torque Sensor

for non-rotating applications

MODEL 8631

NEW

Highlights

- Measuring ranges from 0 ... 5 N·m up to 0 ... 200 N·m
- Linearity error ≤ 0,1 % F.S.
- Standardized output signal
- Tare function, filter and average values configurable
- Extremely high, reliable axial load

Options

- Output signal ±10 V / USB
- burster TEDS
- Dual-range model

Applications

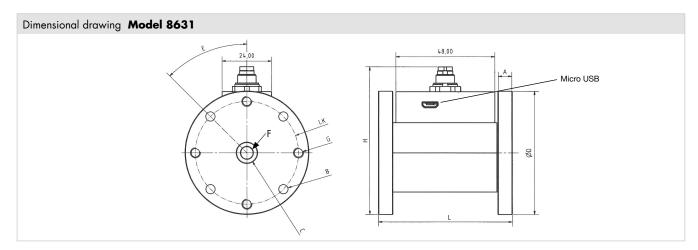
- Test setups for precision mechanics
- Measuring reaction torques for motors
- Measuring car-seat adjustment torques
- Measuring operating torques for door release mechanisms

Product description

This high-precision torque sensor is designed for both static and dynamic measurements on non-rotating parts. The through-hole can be used to feed parts such as cables or Bowden cables through the sensor.

The mounting flanges contain threaded holes and through-holes so that the sensor can be fitted at either end. With no rotating parts, this sensor needs no maintenance when used correctly.

The modular design of this strain-gage sensor allows precise configuration for the desired application.


With the integrated amplifier option, the sensor directly supplies a voltage signal of 0 ... \pm 10 V that is proportional to the torque. The sensor can be configured via the micro-USB interface, providing access to, for example, a filter frequency setting, averaging, and a tare function. With the USB option, in addition to the voltage output, the measurement function is available via USB as well. The sensor comes with the DigiVision software for performing measurements and data archiving, with drivers additionally available e.g. for LabVIEW. Integration into custom software is possible via DLL. Examples can be found on our website www.burster.com

The burster TEDS option (electronic data sheet, memory chip with sensor-specific data) allows rapid configuration of compatible evaluation units (instrumentation amplifier, indicator, ...).

8631	-	5005- VXXXXX	5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX
Measuring range calibrated in N·m		. F	.10	+20		.100	.200
from 0		±5	±10		±50	±100	±200
Accuracy				Higher measuring	ranges on request		
Accuracy	_			0.19	% F.S.		
Relative non-linearity Relative hysteresis					% F.S.		
Maximum limit axial load	[N]	500	750	1000	2000	4000	6000
Maximum limit radial load	[N]	50	75	100	200	400	600
Spring constant	[N·m/rad]	650	1500	5500	15000	30000	135000
Mass moment of inertia measuring side	[10 ⁶ kg*m ²]	37	38	165	170	465	480
Electrical values with		plifier / USB					
Sensitivity				1 m	V/V		
Tolerance of sensitivity					% F.S.		
Bridge resistance (full bridge)				100	00 Ω		
Excitation voltage				5 V (mc	x. 10 V)		
Environmental condi	itions wi	thout amplifie	/ USB		·		
Range of operating and nominal temperature				-20 °C	. +80 °C		
Sensitivity of temperature effects				on the zero point Con the sensitivity O			
Electrical values witl	n amplif	ier / USB					
Rated supply voltage range				5 30 V DC	or 5 V via USB)		
DC power consumption				ca.	1 W		
Output voltage at ± rated torque				±1	0 V		
Output resistance				< 50	00 Ω		
Insulation resistance				zero (bindin	g capability)		
-3 dB cut-off frequency				500	0 Hz		
Ripple				< 50) mV		
Calibration signal				10.00) V DC		
Environmental condi	itions wi	th amplifier / I	USB				
Range of operating and nominal temperature		-		0 ℃	+60 °C		
Sensitivity of temperature effects:				on the zero point 0. on the sensitivity 0.			
Mechanical values							
Dynamic overload safe				up to 70 % froi	n nominal value		
Max. operation torque				150 % of no	ominal torque		
Breakaway torque				300 % of no	minal torque		
Alternating load				70 % of no	minal torque		
Other		5005	5010	5020	5050	5100	5200
Material:				Housing: made of Shaft: steel	anodized aluminiu shell 1.4542	m	
Protection class				acc. EN 6	0529, IP40		
Weight	[g]	40	00	930	950	1700	1750

Geometrie

8631	-	5005- VXXXXX	5010- VXXXXX	5020- VXXXXX	5050- VXXXXX	5100- VXXXXX	5200- VXXXXX
L	[mm]	6	55	7	0	8	30
D	[mm]	ć	50	8	0	10	00
Α	[mm]	;	7	1	0	1	2
Н	[mm]	7	72	8	6	1	05
LK	[mm]	5	50	7	0	8	35
ØB	[mm]	4.5 (4	× 90°)	5.5 (6	x 60°)	9.0 (6	× 60°)
G	[mm]	4 x	: M5	6 x	M5	6 x	: M8
Е	[mm]	4	5°		3	0°	
F	[mm]		6		1	2	
С	[mm]	10	H7		20	H7	
Mounting							
Mounting instructions		Do not exceed the Please refer to ou	e permitted axial or operating instruc	and radial forces d tions for detailed i	uring fitting and op nformation www.b	peration (see techn ourster.com.	ical data).

For detailed dimensions, you can find CAD data for the sensor on our website www.burster.com.

Electrical values

7-pin miniature connector, additionally micro-USB interface for configuration/measurement (Option, USB connection cable included)

Wiring Code depends on	the options selected	
Pin	Assignment without electronic	Assignment with electronic
1	Bridge supply -	Supply GND
2	Bridge supply +	Supply +5 30 V
3	Shield	Shield
4	Signal +	Output signal ±10 V
5	Signal -	Output signal GND
6	TEDS I/O (option) / NC	Control signal
7	TEDS GND (option) / NC	Switching between ranges (option)

This sensor model comes with a USB port in addition to the $0 \dots \pm 10 \text{ V}$ output. Two versions are available:

- ± 10 V output signal, USB used solely for configuration
- ± 10 V output signal, USB used for both configuration and measurement

When a USB-based measurement is launched, the analog output signal is disabled because it is not possible to use both forms of output simultaneously.

With both versions, the measurement signal can be tared, averaged or filtered. These functions can be set up and/or activated via USB and the free version of DigiVision.

Dual-range version

With integrated amplifier, the dual-range option can be selected. The following subdivisions are available:

Graduation:	1:2	1:4	1:5		
	Upper so	cale value of sec	cond range		
5 N⋅m	-	-	1 Nm		
10 N·m	5 Nm	-	2 Nm		
20 N⋅m	10 Nm	5 Nm	-		
50 N⋅m	-	-	10 Nm		
100 N⋅m	50 Nm	-	20 Nm		
200 N⋅m	100 Nm	50 Nm	-		

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin 7.

DigiVision configuration and analysis software

Features

- Can be used to actuate tare function, with value stored in sensor
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

DigiVision Light PC software

DigiVision configuration and analysis software max. 200 measured value/s for one sensor (freely available on our website)

DigiVision Standard PC software

DigiVison configuration and analysis software up to 16 channels

Model 8630-P100

PC-Software DigiVision Professional

DigiVision configuration and analysis software including maths functions; up to 32 Model 8630-P200

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8661) available with standard version

Accessories

Order code	
9900-V594	Mating connection 7 pin
9900-V596	Mating connection 90°-angle
99594-000A-0150030	Connecting cable, length 3 m, other end free
99596-000A-0150030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99141-594A-0150030	Connecting cable for burster desktop instruments with 12 pin socket, length 3 m
99209-586C-0510030	Connecting cable for model 9235, model 7281 and model 9311, length 3 m
9900-K358	Micro USB cable, length 1.8 m
8631-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8631-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)

Calibration

Manufacturer Calibration	Certificate (WKS)										
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.										
DAkkS Calibration Certific	DAkkS Calibration Certificate										
	DAkkS calibration certificate per DIN 51309, clockwise and/or anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.										

Order Code

,	Meas	uring F	Range			Co	de								
		. ±5			5	0	0	5							
		. ±10			5	0	1	0							
		. ±20			5	0	2	0							
		. ±50			5	0	5	0							
		. ±100			5	1	0	0							
	0	. ±200	N⋅m		5	2	0	0				,	Standard	d	
											0	0	0	3	0
8	6	3	1	_	х	Х	х	Х	-	v		0		3	0
Standa Stand Dual-r Dual-r Dual-r	ard se range range range	ensor, or version, version, version,	graduo graduo graduo	ation 1:3 ation 1:4 ation 1:2	5 4 2						0 2 3 4				
	it volta				tion USF	3							0		
	Output voltage 10 V incl. configuration USB Output voltage 10 V incl. USB configuring and measuring USB														
	Output voltage 10 V incl. USB configuring and measuring USB Output signal standardized, mV/V														
	ıt signo	al stand	ardized,	, mV/V	iguring (and med	asuring (USB 							

Torque Sensor

For static and dynamic applications, non-rotary **Model 8627**

Code: 8627 EN Delivery: 4 weeks Warranty: 24 months

- Measurement range from 0 ... 500 Nm to 0 ... 5000 Nm
- Linearity error 0.1 % F.S.
- Reliable and durable
- Simple handling and assembly
- Output signal standardized
- Optional linearity error 0.05 % F.S.
- **Optional with burster TEDS**

Application

This torque sensor is qualified for static and dynamic measurements on non-rotary applications.

Further the measurement of reaction torques on rotating machine parts is possible. Especially torque sensors with flanges are preferred. They are mounted between motor and stator, e.g. in agitator drives. This enables a maintenance-free torque measurement.

For individual measuring tasks the design of our torque sensors can be adapted to the customer's installation conditions.

Description

The design is optimized regarding overall length, weight and volume, so that axial forces up to relatively high limit values and bending moments of up to 20 % of the measuring range have only a small effect to the influence of the measuring element. Four metal film strain gauges are mounted on the measuring element and connected to form a full bridge. When applying AC or DC voltage on the bridge, the mechanical value torque is converted into electrical voltage. The necessary amplifier either delivers a norm signal (0 ... 10 V, 0/4 ... 20 mA) or - with indicator module - a torque signal truly corresponding to the measured variable.

The sensor output signal is standardized, so that an exchange of the sensor (spare part) does not require any new adjustment of the measuring chain.

The burster TEDS option (electronic data sheet, memory chip with sensor-specific data) allows rapid configuration of compatible evaluation units (instrumentation amplifier, indicator, ...).

Technical Data

Order Code	Measuring		Dimensions [mm]								Bore Holes		
	Range	øΑ	øΒ	øD	F	G	L	øΤ	øQ	Number	Pitch		
8627-5500	0 ± 500 Nm	20 ^{H7}	18	100	15	M10	80	82	60	8	45°	39.5	
8627-6001	0 ± 1000 Nm	20 ^{H7}	18	100	15	M10	80	82	60	8	45°	39.5	
8627-6002	0 ± 2000 Nm	75 ^{H7}	20	130	20	M12	100	100	80	12	30°	45	
8627-6005	0 ± 5000 Nm	75 ^{H7}	20	130	20	M12	100	100	80	12	30°	45	

Higher measuring ranges upon request.

Electrical values

Resistor bridge (full bridge): foil strain gauge 350 Ω , nominal*

* Deviation from the indicated values are possible.

Excitation voltage: 2 ... 12 V recommended 10 V

Nominal value: standard, 1 mV/V

Environmental conditions

Operating temperature range: $-15 \,^{\circ}\text{C} \dots + 55 \,^{\circ}\text{C}$ Rated temperature range: $-5 \,^{\circ}\text{C} \dots + 45 \,^{\circ}\text{C}$

Temperature effect:

on zero signal: \pm 0.02 % F.S./K on characteristic value: \pm 0.01 % F.S./K

Mechanical values

Relative linearity error: ± 0.1 % F.S. Relative reversibility error: $\pm 0,1$ % F.S. Relative repeatability error: $\pm 0,1$ % F.S. Max. operating torque (static): 150 % of nominal value Torque limit (static): 200 % of nominal value Breaking moment (static): > 300 % of nominal value

Dynamic load: recommended ≤ 70 % of nominal value

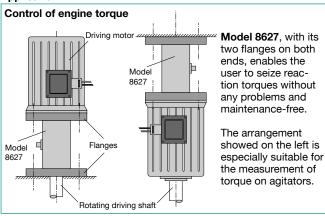
Rated torsion angle: < 0.1°

Material: steel, 1.2826 res. 1.2738

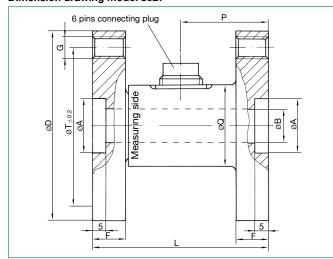
Degree of protection: acc. EN 60529 IP50

Pins assignment:

	Pin
excitation -	1
excitation +	2
shield	3
signal +	4
signal GND	5
NC	6


Mechanical connection:

Electrical connection:


6 pins plug connection:

6 pole model 9953 (included is scope of delivery)

Application

Dimension drawing model 8627

The CAD drawing (3D/2D) for this sensor can be imported online directly into your CAD system.

Download via www.burster.com or directly at www.traceparts.com. For further information about the burster traceparts cooperation refer to data sheet 80-CAD-EN.

Order Information

Torque sensor, non-rotary, both ends with flags, burster TEDS, measurement ±500 Nm **Model 8627-5500**

Accessories

Mating connector, 6 pole cable coupling

Model 9953

Mating connector, 6 pole, 90°- phase shift

Model 9900-V589

Connection cable with one end free, length 3 m,

with connector model 9953 **Model 99553-000A-0110030**

Connection cable, length 3 m

- for burster desktop instruments with 12 pin connectors

Model 99141-553A-0150030

for model 9235, model 9311 and model 7281

Model 99209-553A-0110030

Amplifier, process indicators, digital displays

see section 9 of the catalog.

Manufacturer Calibration Certificate (WKS)

Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.

High-Precision Torque Sensor

rotating, contactless

MODEL 8661

With mounting block

In the cross-section

With mounting block and couplings

With couplings

Highlights

- Measurement ranges of 0 ... 0.02 N·m to 0 ... 1000 N·m
- Very low linearity error ≤ ±0.05 % F.S.
- Output signal 0 ... ±10 V
- Refresh rate 2000 measurements/s

Options

- Speed and angle measurement up to 2000 increments
- Dual range in different graduations
- Shaft end with keyway
- USB port including software

Applications

- Research & development
- Machinery and plant engineering
- Electric motor test
- Suitable for use in all types of test bench

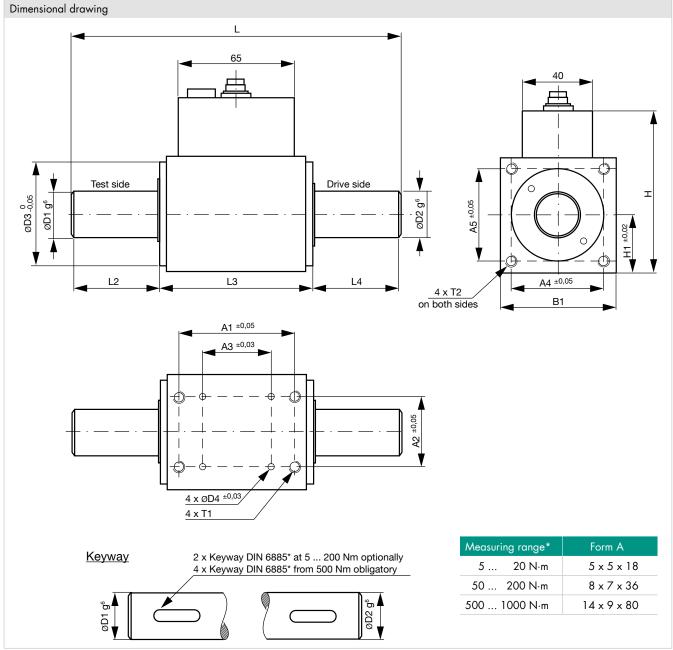
Product description

The non-contact torque sensor type 8661 works according to the strain gage principle. Thanks to the inductive and optical transmission of the signals, the sensor is maintenance-free, the signals are digitized directly on the shaft and made available by the evaluation electronics as a voltage signal or via USB. Thanks to the high-quality bearing, depending on the measuring range, up to 25,000 rpm is possible. The bidirectional voltage output from -10 V ... +10 V allows the direction of rotation to be identified very easily.

To record the speed and angle of rotation, the sensor can optionally be equipped with different number of increments, up to 2000. This speed / angle signal is available as a TTL output signal.

The free DigiVision Light software is available in connection with USB, alternatively drivers for LabVIEW and DASYLab are ready for download.

Connection cables in various lengths, metal bellows couplings and mounting blocks are available for integration in customer-specific systems.


8661	_	4020	4050	4100	4200	4500	5001	5002						
Measuring range calibrated in N·m from 0		±0.02 N⋅m	±0.05 N·m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±1 N·m	±2 N⋅m						
Accuracy														
Relative non-linearity		0.1 %	0.1 % F.S. 0.05 % F.S.											
Relative non-linearity dual range sensor			- 0.1 % F.S.											
Relative hysteresis				< 0.1 % F.S. /	dual range sens	or < 0.2 % F.S.								
Tolerance of sensitivity				±0.1 % F.S. /	dual range sens	or ±0.2 % F.S.								
Electrical values														
Rated supply voltage range	e		10 30 V DC (or 5 V via USB)											
DC power consumption					approx. 2 W									
Output voltage at ± rated torque			±10 V											
Output resistance					1 kΩ									
Insulation resistance					$> 5 M\Omega$									
Refresh rate					2000/sek.									
Ripple					$< 50 \text{ mV}_{ss}$									
Control signal					10.00 V DC									
Environmental cond	itions													
Range of operating and nominal temperature					0 °C +60 °C									
Sensitivity of temperature effects					2. measuring rai 2. measuring rar									
Mechanical values														
Dynamic overload safe				recommend	led 70 % of non	ninal torque								
Max. operation torque			20		torque / dual ro) %							
Breakaway torque					% of nominal to	•								
Alternating load				70	% of nominal to	rque								
Maximum limit axial load	[N]				50									
Maximum limit radial load	[N]		,	3		4	7	13						
Spring constant	[N·m/rad]	1	0	20	50	100	100	180						
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]		0.048		0.05	0.06	0.062	0.077						
Mass moment of inertia drive side	[10 ⁻⁶ kg*m ²]				2.2									
Max. rotary speed	[min ⁻¹]				25000									
Other														
Material		Housing: mad aluminium; strength alumi shaft ends st 1.4	Shaft: high- nium 3.1354; ainless steel	igh- 1354; Housing: made of anodized aluminium										
Protection class				acc	c. EN 60529, IF	240								
Weight	[g]	300												
Installation														
Installation instructions		Please refer	to our operatin	g instructions fo	al and radial for r detailed inform ng from parallel	nation www.bur	ster.com. Suitab	le couplings						

Technical Data

8661	-	5005	5010	5020	5050	5100	5200	5500	6001						
Measuring range calibrated in N·m from 0		±5 N⋅m	±10 N·m	±20 N⋅m	±50 N⋅m	±100 N·m	±200 N⋅m	±500 N·m	±1000 N·m						
Accuracy															
Relative non-linearity					0.05	% F.S.									
Relative non-linearity dual range sensor					0,1 9	% F.S.									
Relative hysteresis				< 0.1 %	F.S. / dual ra	nge sensor < (D.2 % F.S.								
Tolerance of sensitivity				±0.1 %	F.S. / dual ra	nge sensor ±0	.2 % F.S.								
Electrical values															
Rated supply voltage range				10) 30 V DC	(or 5 V via U	SB)								
DC power consumption			approx. 2 W												
Output voltage at ± rated torque			±10 V												
Output resistance			1 kΩ												
Insulation resistance					> 5	$M\Omega$									
Refresh rate					2000)/sek.									
Ripple					< 50) mV _{ss}									
Control signal					10.00) V DC									
Environmental cond	itions														
Range of operating and nominal temperature			0 °C +60 °C												
Sensitivity of temperature effects			the zero point the sensitivity												
Mechanical values															
Dynamic overload safe				recor	mmended 70 °	% of nominal t	orque								
Max. operation torque				200 % of no	minal torque ,	/ dual range s	sensor 150 %								
Breakaway torque					300 % of no	ominal torque									
Alternating load					70 % of no	minal torque									
Maximum limit axial load	[N]		200			300		5	00						
Maximum limit radial load	[N]	15	30	60	125	2	15	250	500						
Spring constant	$[N{\cdot}m/rad]$	800	1700	3000	14000	25000	40000	150000	220000						
Mass moment of inertia measuring side	[10 ⁶ kg*m ²]	2.2	2.35	2.6	33.3	33.7	35.0	600	600						
Mass moment of inertia drive side	[10 ⁻⁶ kg*m ²]	14	4.3	14.6	85.7	85.9	85.5	12	200						
Max. rotary speed	[min ⁻¹]			150	000			70	000						
Other															
Material			Housir	ng: made of a	nodized alum	inium; Shaft: s	tainless steel 1	1.4542							
Protection class					acc. EN 6	0529, IP40									
Weight	[g]		900			1500		60	000						
Installation	[9]		. 00			.500			- •						
Installation instructions			fer to our oper	rating instructi	ons for detaile	radial forces d ed information parallel or ar	www.burster.	com. Suitable							

4317-008661EN-5699-111533

For detailed dimensions you can find sensor CAD data on our website www.burster.com.

8661	-	4020	4050	4100	4200	4500	5001	5002		
Measuring range from 0		±0.02 N⋅m	±0.05 N⋅m	±0.1 N·m	±0.2 N⋅m	±0.5 N⋅m	±1 N·m	±2 N⋅m		
Geometry										
A1	[mm]				45					
A2	[mm]				31					
A3	[mm]				30					
A4	[mm]				26					
A5	[mm]				24					
B1	[mm]				40					
D1	[mm]			5	g6			6g6		
D2	[mm]				8g6					
D4 Ø / deep	[mm]				Ø 3.1 / 5					
Н	[mm]				60					
H1	[mm]				15					
L	[mm]			8	7			94		
L2	[mm]			1	0			14		
L3	[mm]				66					
L4	[mm]			1	1			14		
T1 / deep	[mm]				M4 / 8					
T2 / deep	[mm]		M3 / 5,5							

8661	-	5005	5010	5020	5050	5100	5200	5500	6001	
Measuring range from 0		±5 N⋅m	±10 N⋅m	±20 N⋅m	±50 N⋅m	±100 N·m	±200 N⋅m	±500 N⋅m	±1000 N·m	
Geometry										
A1	[mm]			5	7			5	50	
A2	[mm]			4	4			9	90	
A3	[mm]			4	.1			3	80	
A4	[mm]		45.3			54.4		88	3.4	
A5	[mm]		45.3			54.4		88	3.4	
B1	[mm]		55		64			107		
D1	[mm]		15g6		26g6			45g6		
D2	[mm]		15g6		26g6			45g6		
D4 Ø / deep	[mm]			Ø 3.	1 / 5			Ø 4.1 / 10		
Н	[mm]		85			94	137			
H1	[mm]		27.5		32			53.5		
L	[mm]		143			168			85	
L2	[mm]		30			45		9	95	
L3	[mm]		83		78			95		
L4	[mm]		30		45			95		
T1 / deep	[mm]		M5 / 9		M5 / 8			M8 / 20		
T2 / deep	[mm]			M4	/6			M6	/ 10	

Electrical values

12-pin connector or USB (Option, USB connection cable included)

Wiring Code depends on the options selected	1	
Pin	Assignment	Cable colour (99540-000F-052XXXX)
A	NC	
В	Angular exit B	violet
С	Moment output +	yellow
D	Moment output -	green
E	Supply -	blue
F	Supply +	red
G	Angular exit A	pink
Н	NC	
J	Ground angle output, measuring range switchover	black
K	Control signal	White
L	Measuring range switchover	brown
M	NC	

Accessories

Mounting block model 8661-Z00X

If the sensor needs to be replaced, the locating pin speeds up replacement, avoiding the need for laborious realignment. This can be useful especially when the sensor is only used occasionally in the load path. The mounting block has a central hole and special design allowing a range of options for reliable cable attachment. Two clips ensure the sensor is fixed securely. For further information please see accessories data sheet 8661-ZOOX

Metal bellow couplings

For optimum compensation of misalignment we recommend torsionally free metal bellow couplings. They are characterized by their excellent torsional stiffness during torque load and their low restoring forces. The couplings are optionally with keyways available.

For further information please see accessories data sheet 8.69X

Options

USB interface

This sensor version has a USB connection instead of the $\pm 10~V$ output. The sensor is powered via USB, no further connections required.

In addition to torque, the speed or rotation angle measured values are optionally available. The calculated mechanical performance in is also displayed in DigiVision.

Free drivers are available for integration into LabVIEW and DASYLab, also a DLL for integration into your own programs.

Dual range

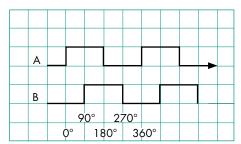
The sensor with two measuring ranges corresponds to its dimensions of the standard version, but has two separately calibrated measuring ranges. The measuring ranges are switched within <50 ms, even during measurement operation, by applying the operating voltage to pin L or via USB. The following graduations are available:

Gradu	ation:	1:	10	1	:4	1	:5
			Upper so	cale va	lue of sec	ond ra	nge
0.5	$N \cdot m$		-		-	0.1	$N \cdot m$
1	$N \cdot m$		-		-	0.2	$N \cdot m$
2	$N \cdot m$	0.2	$N \cdot m$	0.5	$N \cdot m$		-
5	$N \cdot m$	0.5	$N \cdot m$		-	1	$N \cdot m$
10	N⋅m	1	N⋅m		-	2	N·m
20	$N \cdot m$	2	$N \cdot m$	5	$N \cdot m$		-

Graduation:	1:10	1:4	1:5
	Upper so	cale value of sec	ond range
50 N⋅m	5 N⋅m	-	10 N⋅m
100 N·m	10 N⋅m	-	20 N⋅m
200 N⋅m	20 N⋅m	50 N⋅m	-
500 N⋅m	50 N⋅m	-	100 N⋅m
1000 N⋅m	100 N⋅m	-	200 N⋅m

The second, smaller measuring range can be activated via USB or by applying the operating voltage to pin L.

Torque sensor with integrated rotational speed / angular displacement measurement

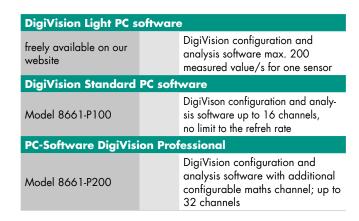

8661 torque sensors are optionally available with integrated rotational speed and angular displacement measurement. Two pulse channels with TTL level – channel A and channel B – are always available. For clockwise rotation (looking at the test side), channel A leads channel B with a phase shift of 90°. Only one pulse channel is needed for speed measurement.

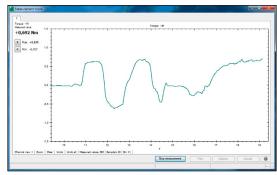
For angular displacement measurement (or direction detection), both channels need to be evaluated. To achieve the maximum angular resolution, four-edge decoding must be used to read both the rising and falling edges. For instance an angular resolution of up to 0.045° can then be achieved with an encoder disk having 2000 increments.

Maximum speed:

Encoder disk with 2000 increments: $\leq 3000 \text{ min}^{-1}$ Encoder disk with Encoder disk with Encoder disk with Encoder disk with 240 increments: $\leq 15000 \text{ min}^{-1}$ Encoder disk with 240 increments: $\leq 25000 \text{ min}^{-1}$

Increments	from 0 0,02 N·m to 0 2 N·m	from 0 5 N·m to 0 200 N·m	from 0 500 N·m to 0 1000 N·m
2000	-	yes	-
1024	yes	yes	yes
400	yes	yes	-
240	yes	-	-


The measuring accuracy of the rotational speed and angular displacement measurement is directly related to the speed and the encoder disk used. With the USB option, another influencing factor is the setting of the averaging, which should be adapted to the speed range used.



DigiVision configuration and analysis software

Features

- Tare function
- Configuration options for averaging and filters; value stored in sensor
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8625) available with standard version

Accessories

Order code	
9940	Mating connection 12 pin (scope of delivery)
9900-V539	Mating connection 90°-angle
99540-000F-0520030	Connecting cable, length 3 m, other end free
99539-000F-0520030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99209-540G-0160030	Connecting cable for model 7281 and model 9311, length 3 m, with external supply
99163-540A-0520030	Connecting cable, length 3 m, 8661 to DIGIFORCE® 9307combined cannel D (option channel)
99209-215A-0090004	Adapter cable to DIGIFORCE® 9307 standard channel A/B and C (usable only in connection with type 99163-540A-052xxxx)
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
8661-Z010	USB cable connector type A, type BMini, length 2 m, black
8661-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8661-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
8600-Z00X	Mounting block, see accessories data sheet 8661-Z00X
8600-Z010	Power pack for external supply

Calibration

Manufacturer Calibration Certificate (WKS)					
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.				
Calibration Certificate v	vith accreditation symbol				
	Calibration certificate with accreditation symbol per DIN 51309, clockwise or/and anticlockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.				

Order code

	measu	ring Ro	ange			Co	de							
	0	±0.0)2 N⋅m	1	4	0	2	0						
	0	±0.0	5 N·m	1	4	0	5	0						
	0	±0.1	N∙m	1	4	1	0	0						
	0	±0.2	N⋅m	1	4	2	0	0						
	0	±0.5	N⋅m	1	4	5	0	0						
	0	±1	N⋅m	1	5	0	0	1						
	0	±2	N⋅m	1	5	0	0	2						
	0	±5	N⋅m	1	5	0	0	5						
	0	±10	N⋅m	1	5	0	1	0						
	0	±20	N⋅m	1	5	0	2	0						
	0	±50	N⋅m	1	5	0	5	0						
	0	±100	N⋅m	1	5	1	0	0						
	0	±200	N⋅m	1	5	2	0	0						
	0	±500	N⋅m	1	5	5	0	0						
	0 ±	1000	N⋅m	1	6	0	0	1				Stan	dard	
										,	0	0	0	(
8	6	6	1	-					_	V				
	lard ser													
Stan Dua Dua Dua With Spec	ndard ser I-range v I-range v I-range v hout spee ed/angle ed/angle ed/angle	rersion, quersion, quersion, quersion, quersion, quersion, qued/angle measure	graduo graduo e meas rement rement	ation 1: ation 1: ation 1: suremer 400 in 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2 3	0 1 2 3 4		
Stan Dua Dua Dua With Spee Spee Spee Outpu	Il-range v Il-range v	rersion, quersion, quersion, quersion, quersion, quersion, qued/angle measure	graduo graduo e meas rement rement rement	ation 1: ation 1: ation 1: suremer 400 in 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2		0	
Stan Dua Dua With Speeces Speeces	I-range v I-range v I-rang	rersion, grersion, grersion, grersion, greed/angle measure mea	graduo graduo e meas rement rement rement	ation 1: ation 1: ation 1: suremer 400 in 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2		0	
Stan Dua Dua With Speeces Speeces	Il-range v Il-range v	rersion, grersion, grersion, grersion, greed/angle measure mea	graduo graduo e meas rement rement rement	ation 1: ation 1: ation 1: suremer 400 in 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2			
Stan Dua Dua Dua With Spee Spee Spee Utpu USB Outp	l-range v l-range v l-range v l-range v hout spee ed/angle ed/angle ed/angle ed/angle ut signa put voltage interface put voltage	rersion, quersion, quersion, quersion, que d'angle en measure en e	graduo graduo e meas rement rement rement	ation 1: ation 1: ation 1: suremer 400 in 1024 in	10 availa 5 availa 4 availa nt acrement increment	ble ≥ 0 ble ≥ 2	.5 N·m				0 1 2		1	

Precision Torque Sensor

rotating, contactless

MODEL 8656

Highlight: Very short design

Small measuring range

Large measuring range

Highlights

- Measurement ranges of 0 ... 1 N·m to 0 ... 100 N·m
- Very short design
- Output signal 0 ... ±10 V

Options

- Speed and angle measurement with resolution of up to 400 increments
- USB port including software

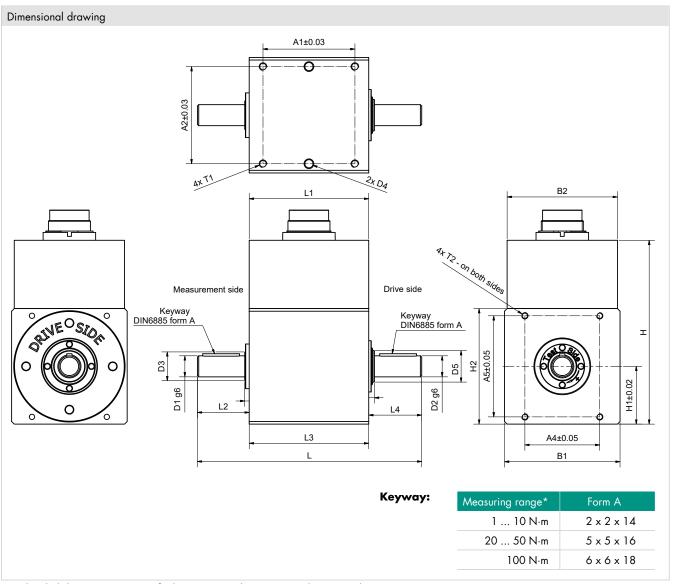
Applications

- End-of-line test benches
- Research & development
- Machinery and plant engineering
- Electric motor test
- Suitable for use in all types of test bench

Product description

The very short torque sensor model 8656 is contactless constructed. The torque is recorded by the torsion of the shaft using the strain gauge principle. Thanks to the inductive and optical transmission of the signals, the sensor is maintenance-free, the signals are digitized directly on the shaft and made available by the evaluation electronics as a voltage signal or via USB. Thanks to the high-quality, up to 10,000 rpm is possible. The direction of rotation can be seen from the potential of the output voltage, clockwise rotation corresponds to positive output voltage, counterclockwise rotation the voltage level is negative.

The shaft is equipped with keyways in every measuring range, matching keys are included. If a key connection is not required, the key can be omitted. The torque is matched with suitable couplings, we recommend model 8690, safely transmitted.


To record the speed and angle of rotation, the sensor can optionally be equipped with an incremental disc with 400 increments. This speed / angle signal is available as a TTL output signal.

The free DigiVision software is available in connection with USB, alternatively drivers for LabVIEW and DASYLab are ready for download.

Connection cables in various lengths, metal bellows couplings and mounting brackets are available for integration in customer-specific systems.

Technical Data

8656	-	5001	5002	5005	5010	5020	5050	5100	
Measuring range calibrated in N·m from 0		±1 N·m	±2 N⋅m	±5 N⋅m	±10 N·m	±20 N⋅m	±50 N⋅m	±100 N⋅m	
Accuracy									
Relative non-linearity					0.2 % F.S.				
Relative hysteresis		0.15 % F.S.							
Tolerance of sensitivity					0.25 % F.S.				
Electrical values									
Rated supply voltage range	Э			10 3	0 V DC (or 5 V	via USB)			
DC power consumption					approx. 2 W				
Output voltage at ± rated torque					±10 V				
Output resistance					330 Ω				
Insulation resistance					> 5 MΩ				
Update rate					400/sec.				
Ripple					< 50 mV _{ss}				
Control signal					10.00 V DC				
Environmental cond	itions								
Range of operating and nominal temperature					0 °C +60 °C				
Sensitivity of temperature effects					ero point 0.015 ensitivity 0.015				
Mechanical values					,				
Dynamic overload safe				recommend	ded 70 % of nor	ninal torque			
Max. operation torque					% of nominal to				
Breakaway torque					% of nominal to	•			
Alternating load					% of nominal to	•			
Maximum limit axial load	[N]		7	70			50	165	
Maximum limit radial load	[N]	5	10	13	20	25	30	50	
Spring constant	[N·m/rad]	33	30	10	000	75	500	18000	
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]			4			8	22	
Mass moment of inertia	[10 ⁶ kg*m ²]	1 8.5 29						25	
Max. rotary speed	[min ⁻¹]				10000	1		1	
Other									
Material			Housing	: made of anod	ized aluminium;	Shaft: steel shel	1.4542		
Protection class					c. EN 60529, II				
Weight	[g]		3	10	,		85	710	
Installation									
Installation instructions		Please refer	to our operatin	ng instructions fo	r detailed inform	rces during fittin nation www.bur l or angular offs	ster.com. Suitab	ole couplings	

For detailed dimensions you can find sensor CAD data on our website www.burster.com.

8656	_	5001	5002	5005	5010	5020	5050	5100
Measuring range from 0		±1 N·m	±2 N⋅m	±5 N⋅m	±10 N·m	±20 N⋅m	±50 N⋅m	±100 N·m
Geometry								
A1	[mm]			(35			33.5
A2	[mm]		3	17		3	6	41
A4	[mm]		28	3.5		4	.4	50
A5	[mm]		38	3.5		4	.1	48
B1	[mm]		4	4		5	0	59
B2	[mm]				42			
D1 / D2	[mm]		8	g6		15g6		18g6
D3	[mm]		1	1		16		24
D4 Ø / deep	[mm]				Ø 3.1 / 6			
H1	[mm]		2	2		2	5	29.5
H2	[mm]		4	4		5	0	59
L	[mm]		8.5	5.4		90).1	95.5
L2	[mm]		19	9.7		21	.5	24
L3	[mm]		43	5.5	47.5			
L4	[mm]		20).2		21	.1	24
T1 / deep	[mm]		M3	/7			M4 / 7	
T2 / deep	[mm]		M2.	5 / 8	M3	/ 8	M4 /8	

Electrical values

12-pin connector or mini USB with screw connection for configuration / measurement (option, USB connection cable included)

Wiring Code depends on the options	selected	
Pin	Assignment	Cable colour (99540-000F-052XXXX)
A	NC	
В	Angular exit B	violet
С	Moment output +	yellow
D	Moment output -	green
E	Supply -	blue
F	Supply +	red
G	Angular exit A	pink
Н	NC	
J	Ground angle output	black
K	Control signal	White
L	-	-
M	NC	

Accessories

Mounting block model 8600-Z02X

The mounting block has a central hole and special design allowing a range of options for reliable cable attachment. Two clips ensure the sensor is fixed securely.

For further information please see accessories data sheet 8600-Z02X

Metal bellow couplings

Couplings are necessary for correct installation. We recommend torsionally free metal bellows couplings to achieve an optimum compensation of misalignment.

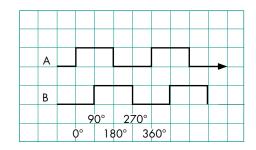
The couplings are characterized by their excellent torsional stiffness during torque load and their low restoring forces. The couplings are optionally available with feather keys.

For further information please see accessories data sheet 8690.

Options

Integrated amplifier with USB interface

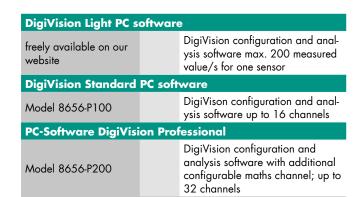
This sensor version has an USB connection instead of the $\pm 10~V$ output. The sensor is powered via USB, no further connections required.

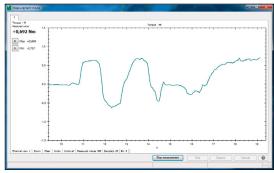

In addition to torque, the speed or rotation angle measured values are optionally available at the output. The mechanical performance calculated in the sensor is also displayed via the DigiVision software.

Free drivers are available for integration into LabVIEW and DA-SYlab, also a DLL for integration into your own programs.

Torque sensor with integrated rotational speed / angular displacement measurement

8656 torque sensors are optionally available with integrated rotational speed and angular displacement measurement. Two pulse channels with TTL level – channel A and channel B – are always available. For clockwise rotation (looking at the test side), channel A leads channel B with a phase shift of 90°. Only one pulse channel is needed for speed measurement.


For angular displacement measurement (or direction detection), both channels need to be evaluated. To achieve the maximum angular resolution, four-edge decoding must be used to read both the rising and falling edges, so an angular resolution of 0.255 $^{\circ}$ is possible.



DigiVision configuration and analysis software

Features

- Can be used to actuate tare function
- Configuration options for averaging and filters
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8625, 8661) available with standard version

Accessories

Order code	
9940	Mating connection 12 pin (scope of delivery)
9900-V539	Mating connection 90°-angle
99540-000F-0520030	Connecting cable, length 3 m, other end free
99539-000F-0520030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99209-540G-0160030	Connecting cable for model 7281 and model 9311, length 3 m, with external supply
99163-540A-0150030	Connecting cable, length 3 m, 8656 to DIGIFORCE® 9307combined cannel D (option channel)
99209-215A-0090004	Adapter cable to DIGIFORCE® 9307 standard channel A/B and C (usable only in connection with type 99163-540A-015xxxx)
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
9900-K349	USB cable, length 2 m (included with the USB version)
8656-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8656-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
8600-Z02X	Mounting block, see accessories data sheet 8656-Z02X

Calibration

Manufacturer Calibr	ation Certificate (WKS)
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.
DAkkS Calibration C	ertificate
	DAkkS calibration certificate per DIN 51309, clockwise or/and counter clockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.

Order Code

Measuring Range		Co	de									
0 ±1 N·m	5	0	0	1								
0 ±2 N⋅m												
0 ±5 N⋅m	5	0	0	5								
0 ±10 N·m	5	0	1	0								
0 ±20 N⋅m	5	0	2	0								
0 ±50 N⋅m	5	0	5	0								
0 ±100 N·m	5	1	0	0					Standard	1		
							0	0	0	2	0	
8 6 5 6 -					-	V	0			2	0	
■ Without angle/speed measuremen	ıt							0				
Speed/angle measurement 400 in												
Output signals												
Output voltage 0 ±10 V												
■ USB interface									1			
Rounded shaft ends with keyway										2		

Torque Sensor

Square, rotating, contactless

MODEL 8655

Large measuring range

Highlights

- Measurement ranges of 0 ... 1 N·m to 0 ... 160 N·m
- Internal square and external square
- Very short design
- Output signal 0 ... ±10 V

Options

- Speed and angle measurement with resolution of up to 400 increments
- USB port including software

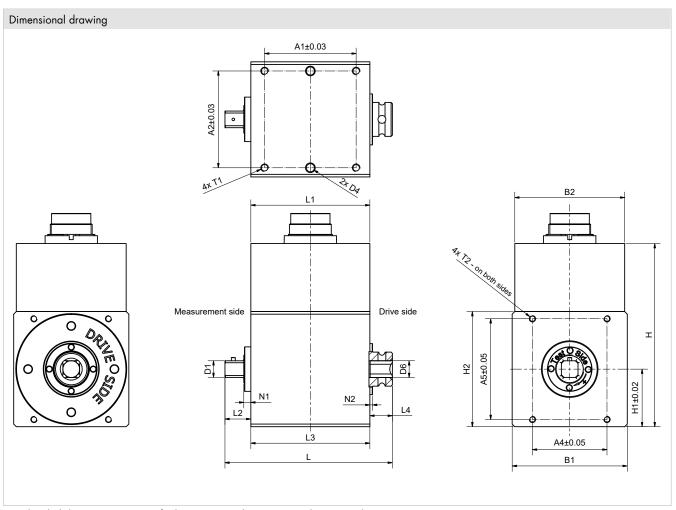
Applications

- Monitoring and regulation of screwing processes
- Quality monitoring of tools and machines
- Machinery and plant engineering

Product description

The compact torque sensor model 8655 with standard square is contactless constructed. The torque is recorded by the torsion of the shaft using the strain gage principle. Thanks to the inductive and optical transmission of the signals, the sensor is maintenance-free, the signals are digitized directly on the shaft and made available by the evaluation electronics as a voltage signal or via USB. The direction of rotation can be seen from the potential of the output voltage, clockwise rotation corresponds to positive output voltage, counterclockwise rotation the voltage level is negative.

The standard square enables simple integration into existing systems or devices, additional components such as couplings are not require.


To record the speed and angle of rotation, the sensor can optionally be equipped with an incremental disc with 400 increments. This speed / angle signal is available as a TTL output signal.

The free DigiVision software is available in connection with USB, alternatively drivers for LabVIEW and DASYLab are ready for download.

Connection cables in various lengths, metal bellows couplings and mounting brackets are available for integration in customer-specific systems.

Technical Data

8655	-	5001	5002	5005	5012	5025	5050	5063	5100	5160					
Measuring range calibrated in N·m from 0		±1 N⋅m	±2 N·m	±5 N⋅m	±12 N·m	±25 N·m	±50 N⋅m	±63 N·m	±100 N⋅m	±160 N·n					
Accuracy															
Relative non-linearity						0.25 % F.S.									
Relative hysteresis						0.2 % F.S.									
Tolerance of sensitivity						0.25 % F.S.									
Electrical values															
Rated supply voltage range	e				10 30	V DC (or 5 \	V via USB)								
DC power consumption						approx. 2 W	/								
Output voltage at ± rated torque						±10 V									
Output resistance			1 kΩ												
Insulation resistance			> 5 MΩ												
Update rate						400/sec.									
Ripple						< 50 mV _{ss}									
Control signal						10.00 V DC									
Environmental cond	itions														
Range of operating and nominal temperature					0	°C +60 °	°C								
Sensitivity of temperature effects						point 0.01 sitivity 0.01									
Mechanical values															
Dynamic overload safe					recommende	d 70 % of n	ominal torqu	е							
Max. operation torque					120 %	of nominal	torque								
Breakaway torque					300 %	of nominal	torque								
Alternating load					70 %	of nominal	torque								
Maximum limit axial load	[N]		7	0			150		10	55					
Maximum limit radial load	[N]	5	10	13	20	25	3	0	50	65					
Spring constant	$[N\cdot m/rad]$	30	00	10	000		5000		160	000					
Mass moment of inertia measuring side	[10 ⁻⁶ kg*m ²]		3.	50			7.10		21	.50					
Mass moment of inertia drive side	[10 ⁻⁶ kg*m ²]		1.0 1.05 8.50 34.00												
Max. rotary speed	[min ⁻¹]	3000													
Other															
Material			Но	using: made	of anodized	d aluminium;	stainless ste	el shaft 1.45	542						
Protection class					acc.	EN 60529,	IP40								
Weight	[g]		3	10			450		7:	50					
Installation															
Installation instructions					rmitted axial rating instruc										

For detailed dimensions you can find sensor CAD data on our website www.burster.com.

8655	-	5001	5002	5005	5012	5025	5050	5063	5100	5160				
Measuring range from 0		±1 N⋅m	±2 N⋅m	±5 N⋅m	±12 N⋅m	±25 N⋅m	±50 N⋅m	±63 N⋅m	±100 N·m	±160 N⋅m				
Geometry														
A1	[mm]				35				33	3.5				
A2	[mm]		3	7			36		4	.1				
A4	[mm]		28	3.5			44		5	0				
A5	[mm]		38	3.5			41		4	.8				
B1	[mm]		4	4			50		5	9				
B2	[mm]					42								
D1	[mm]			nal square 21 form E			external squ N 3121 forr		½" external squa DIN 3121 form					
D6 / deep	[mm]		½" intern DIN 3121 fo	al square orm H, 8 mn	ı	3/8" DIN 31:	internal squ 21 form H, 1	are 12.2 mm	DIN 312	al square 1 form H, 5 mm				
D4 Ø / deep	[mm]					Ø 3.1 / 6								
H1	[mm]		2	2			25		29	P.5				
H2	[mm]		4	4			50		5	9				
L	[mm]		6	4			71.10		89	P.4				
L2	[mm]		9	.9			13.5		17	.90				
L3	[mm]		45	5.5				5						
L4	[mm]		8	.6			10.1		24					
T1 / deep	[mm]		M3	/7				M4 / 7	7					
T2 / deep	[mm]		M2.5	5 / 8			M3 / 8		M4	/8				

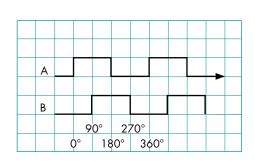
Electrical values

12-pin connector or USB connection for configuration / measurement (option, USB connection cable included)

Wiring Code depends on the options selected	d	
Pin	Assignment	Cable colour (99540-000F-052XXXX)
A	NC	
В	Angular exit B	violet
C	Moment output +	yellow
D	Moment output -	green
E	Supply -	blue
F	Supply +	red
G	Angular exit A	pink
H	NC	
J	Ground angle output	black
K	Control signal	white
L	NC	brown
M	NC	

Options

Integrated amplifier with USB interface



This sensor version has an USB connection instead of the $\pm 10~V$ output. The sensor is powered via USB, no further connections required.

In addition to torque, the speed or rotation angle measured values are optionally available at the output. The mechanical performance calculated in the sensor can also be displayed using the DigiVision software.

Free drivers are available for integration into LabVIEW and DASYLab, also a DLL for integration into your own programs.

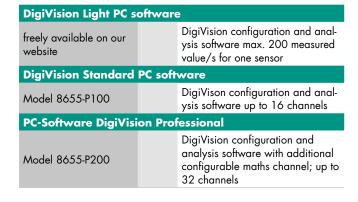
Torque sensor with integrated rotational speed / angular displacement measurement

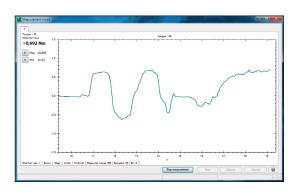
8655 torque sensors are optionally available with integrated rotational speed and angular displacement measurement. Two pulse channels with TTL level – channel A and channel B – are always available. For clockwise rotation (looking at the test side), channel A leads channel B with a phase shift of 90°. Only one pulse channel is needed for speed measurement.

For angular displacement measurement (or direction detection), both channels need to be evaluated. To achieve the maximum angular resolution, four-edge decoding must be used to read both the rising and falling edges, so an angular resolution of 0.255 $^{\circ}$ is possible.

Accessories

Mounting block model 8600-Z02X


The mounting block has a central hole and special design allowing a range of options for reliable cable attachment. Two clips ensure the sensor is fixed securely.


For further information please see accessories data sheet 8600-Z02X

DigiVision configuration and analysis software

Features

- Can be used to actuate tare function
- Configuration options for averaging and filters
- Intuitive user interface
- Automatic sensor identification
- Sensor calibration data readout

USB measurement option

- Numerical & graphical display and measurement of the physical torque value
- Practical start and stop trigger functions
- 4 limits can be configured for each measurement channel
- MIN/MAX value acquisition
- Automatic scaling
- Measurement reports can be saved as Excel or PDF file
- Archive viewer for displaying sets of curves
- X Multichannel measurements, even with different sensors (e.g. 9206, 8631, 8625, 8661) available with standard version

Accessories

Order code	
9940	Mating connection 12 pin (scope of delivery)
9900-V539	Mating connection 90°-angle
99540-000F-0520030	Connecting cable, length 3 m, other end free
99539-000F-0520030	Connecting cable, length 3 m, plug with 90°-angle, other end free
99209-540G-0160030	Connecting cable for model 7281 and model 9311, length 3 m, with external supply
99163-540A-0150030	Connecting cable, length 3 m, 8655 to DIGIFORCE® 9307combined cannel D (option channel)
99209-215A-0090004	Adapter cable to DIGIFORCE® 9307 standard channel A/B and C (usable only in connection with type 99163-540A-015xxxx)
	DigiVision Light configuration and analysis software, max. 200 measured value/s for one sensor (freely available on our website)
9900-K349	USB cable, length 2 m (included with the USB version)
8655-P100	DigiVision Standard configuration and analysis software; up to 16 channels
8655-P200	DigiVision Professional with additional configurable maths channel; up to 32 channels
8600-Z02X	Mounting block, see accessories data sheet 8600-Z02X

Calibration

Manufacturer Calibr	ation Certificate (WKS)
	Special calibration for clockwise or/and counter clockwise direction torque, in 20 % steps of range up and down.
DAkkS Calibration C	ertificate
	DAkkS calibration certificate per DIN 51309, clockwise or/and counter clockwise torque, with eight steps spaced across the measurement range, increasing and decreasing.

Order Code

	Meas	uring F	Range			Co	de								
	0	±1	N∙m	1	5	0	0	1							
	0	±2	N⋅m	1	5	0	0	2							
	0	±5	N⋅m	1	5	0	0	5							
	0	±12	N⋅m	1	5	0	1	2							
	0	±25	N⋅m	1	5	0	2	5							
	0	±50	N⋅m	1	5	0	5	0							
	0	±63	N⋅m	1	5	0	6	3							
	0	±100	N⋅m	1	5	1	0	0							
	0	±160	N⋅m	1	5	1	6	0				Stan	dard		
											0	0	0	1	0
8	6	5	5	-					-	V	0			1	0
	f									1					
■ Wit	hout and	gle/spe	ed meas	suremen	nt							0			
		le measi				ts									
	,														
Outpu	ut sign	als											i		
_		ıge 0	±10 V						0						
	interfac	_								1					
		square and external square acc. DIN 3121													

Torque Sensor

Rotating, contact ring transfer

Model 86403 with square end Model 86413 with round shaft ends Model 86423 with hexagonal shaft end Code: 86403 EN

Delivery: 4 weeks

Warranty: 24 months

- Measuring ranges between 0 ... ± 1 Nm and 0 ... 1000 Nm
- Excellent reproducibility
- Standardized output signal makes exchange easy
- Optionally available with factory calibration certificate
- Designed for clockwise and counterclockwise torque
- Optionally available with integrated angle measurement
- Rotation speed up to 3000 min⁻¹ (short-term)

Application

Precise, reliable measurements of both static and dynamic torques in either direction can be made with this range of sensors.

This opens a wide range of possible applications to the user. These torque sensors are standard equipment in a wide range of industrial automation, quality control and automotive components industry applications, as well as in laboratories.

Typical applications:

Screwing technology

- Checking and adjusting bolting tools such as torque limiting wrenches, screwdrivers
- ► Testing bolted connections

Measuring the drag torque of motors and pumps

- ► Frictional torques of gears, bearings and seals
- Testing torsion springs
- Adjusting equipment in the automobile industry (sunroof, power windows etc.)

Description

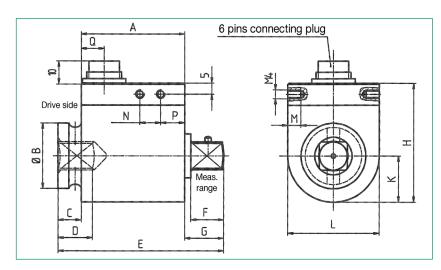
Strain gauges are mounted on the torsion shaft of the sensor element, itself made of steel, connected to form a full bridge. The electrical power excitation for the wire strain gauge full bridge and the transmission of the measured signal is provided through a high-quality slip-ring system between the stator and the rotor.

For a clockwise torque, the measurement signal is positive, and it is negative for a counterclockwise torque.

The sensor for the optionally available angle measurement for the square shaft versions is fitted with an additional pulse-generating disk.

With the aid of a second encoder track, displaced by 90°, allows the subsequent evaluation units to perform 4-fold edge evaluation. This allows significantly improved resolution to be achieved. The offset track makes it possible to detect the direction of the rotation.

The characteristic parameters for the sensors are standardized in order to reduce the effort required to check a connected amplifier or to exchange the sensor.


Technical Data Model 86403

Toque sensor, rotating, standard square ends according to DIN 3121

Order Code		urement	Sensi- tivity	Square Ends	Spring Constant	Max. Lat-	Torque of Inertia	Mass	Dimens				sions	ons [mm]									
		90	uvity	Lilas		eral Force	Drive End												ı				
			[mV/V]		[Nm/rad]	[N]	J in [kg m²]	[kg]	Α	В	С	D	Е	F	G	Н	L	ĸ	М	N	Р	Q	
86403-5001	0 ±	1 Nm	0.5	1/4"	1.9 · 10 ²	4	2.9 · 10 ⁻⁷	0.14	45.5	13	8.6	8	64	7.2	9.9	39	24	12	5	9	8.6	12.2	
86403-5002	0 ±	2 Nm	0.5	1/4"	4.3 · 10 ²	5	2.9 · 10 ⁻⁷	0.14	45.5	13	8.6	8	64	7.2	9.9	39	24	12	5	9	8.6	12.2	
86403-5005	0 ±	5 Nm	2	1/4"	$2.7 \cdot 10^{2}$	7	2.9 · 10 ⁻⁷	0.14	45.5	13	8.6	8	64	7.2	9.9	39	24	12	5	9	8.6	12.2	
86403-5012	0 ±	12 Nm	2	1/4"	6.6 · 10 ²	7.5	3.0 · 10 ⁻⁷	0.14	45.5	13	8.6	8	64	7.2	9.9	39	24	12	5	9	8.6	12.2	
86403-5025	0 ±	25 Nm	2	3/8"	$2.3 \cdot 10^{3}$	12	1.2 · 10 ⁻⁵	0.32	47.5	22	10.1	12.2	71	10.4	13.5	54	42	21	6	9.5	11	10.5	
86403-5063	0 ±	63 Nm	2	3/8"	5.7 · 10³	28	1.2 · 10-5	0.32	47.5	22	10.1	12.2	71	10.4	13.5	54	42	21	6	9.5	11	10.5	
86403-5160	0 ±	160 Nm	2	1/2"	1.4 · 10 ⁴	65	1.7 · 10 ⁻⁵	0.35	47.5	29.7	10.7	15.9	76	15.1	17.9	54	42	21	6	9.5	11	10.5	
86403-5500	0 ±	500 Nm	2	3/4"	5.9 · 10 ⁴	200	1.1 · 10-4	0.80	55	44	19.1	24.9	100	22.6	25.9	68	60	30	-	-	-	10.5	
86403-6001	0 ± 1	1000 Nm	2	1"	1.1 · 10 ⁵	240	2.6 · 10-4	1.40	55	54	33.1	29.6	132	27.4	43.9	68	60	30	-	-	-	10.5	

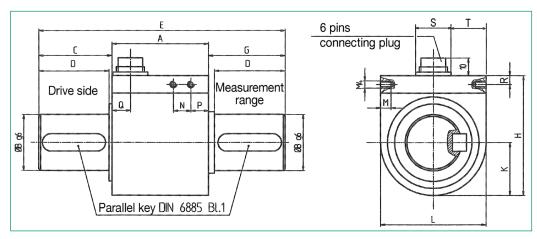
Higher ranges on request

Dimensional drawing Model 86403

Model 86403-...-V501 Torque sensor, rotating, standard square ends, with angle measurement

Order Code		urement ange	Sensi- tivity		Spring Constant	Max. Lat-	Torque of Inertia	Mass Dimensions [mm]																
	ne	ange	livity	Enus		eral	Drive End																	
			[mV/V]		[Nm/rad]	Force [N]	J in [kg m²]	[kg]	Α	В	С	D	Е	F	G	Н	L	K	М	N	Р	Q	R	s
86403-5001-V501	0 ±	1 Nm	0.5	1/4"	1.4 ·10 ²	4	3.2 ·10-6	0.5	65	13	9	8	84	7.2	10	48.5	34	17	4	9	10.5	30.5	10	12
86403-5002-V501	0 ±	2 Nm	0.5	1/4"	4.5 ·10 ²	5	3.3 ·10-6	0.5	65	13	9	8	84	7.2	10	48.5	34	17	4	9	10.5	30.5	10	12
86403-5005-V501	0 ±	5 Nm	2	1/4"	3.0 ·10 ²	7	3.3 ·10-6	0.5	65	13	9	8	84	7.2	10	48.5	34	17	4	9	10.5	30.5	10	12
86403-5012-V501	0 ±	12 Nm	2	1/4"	6.7 ·10 ²	7.5	3.3 ·10-6	0.5	65	13	9	8	84	7.2	10	48.5	34	17	4	9	10.5	30.5	10	12
86403-5025-V501	0 ±	25 Nm	2	3/8"	2.4 ·10 ³	12	1.2 ·10 ⁻⁵	0.5	78	22	11	12.2	100.8	10.4	11.8	57	42	21	6	50	16	28	24	9
86403-5063-V501	0 ±	63 Nm	2	3/8"	6.8 ·10 ³	28	1.2 ·10-5	0.5	78	22	11	12.2	100.8	10.4	11.8	57	42	21	6	50	16	28	24	9
86403-5160-V501	0 ±	160 Nm	2	1/2"	1.2 ⋅10⁴	65	1.7 ·10 ⁻⁵	0.6	78	29.8	12	16.9	106	15.1	16	57	42	21	6	50	16	28	24	9
86403-5500-V501	0 ±	500 Nm	2	3/4"	3.9 ⋅10⁴	200	9.2 ·10-5	1.3	92	44	18	24.9	135	22.6	25	70	56	28	10	66	13	43	24	16
86403-6001-V501	0 ±1	1000 Nm	2	1"	8.9 ⋅10⁴	240	3.6 ⋅10-4	1.5	92	54	53.1	29.9	177	27.3	31.9	70	56	28	10	66	13	43	24	16

Dimensional drawing Model 86403-...V501


Technical Data

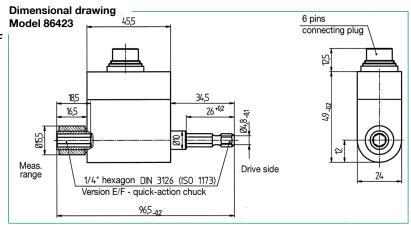
Model 86413

Torque sensor, rotating, round shaft ends with parallel key

Order Code	Measurement	Sensi-	Spring	Max.	Torque	Mass	Dimensions [mm]													
	Range	tivity	Constant	Lat-	of Inertia															
				_eral	Drive End															
				Force																
		[mV/V]	[Nm/rad]	[N]	J in [kg m²]	[kg]	Α	В	С	D	E	G	Н	L	K	М	N	Р	Q	R
86413-5001	0 ± 1 Nm	0.5	1.9 ·10 ²	4	1.34 ·10 ⁻⁶	0.16	45.5	8	19.7	18	85	19.7	39	24	12	5	9	27.9	33.3	5
86413-5002	0 ± 2 Nm	0.5	1.9 ·10 ²	5	1.34 ·10 ⁻⁶	0.16	45.5	8	19.7	18	85	19.7	39	24	12	5	9	27.9	33.3	5
86413-5005	$0 \dots \pm 5 \text{ Nm}$	2	2.43 ·10 ²	7	1.34 ·10 ⁻⁶	0.16	45.5	8	19.7	18	85	19.7	39	24	12	5	9	27.9	33.3	5
86413-5010	0 ± 10 Nm	2	4.56 ·10 ²	7.5	1.35 ·10 ⁻⁶	0.16	45.5	8	19.7	18	85	19.7	39	24	12	5	9	27.9	33.3	5
86413-5020	$0 \dots \pm 20 \text{ Nm}$	2	1.77 ·10 ³	12	1.16 ·10 ⁻⁵	0.35	47.5	15	21.1	20	90	21.5	54	42	21	6	9.5	11	10.5	5
86413-5050	$0 \dots \pm 50 \text{ Nm}$	2	4.82 ·10 ³	28	1.17 ·10 ⁻⁵	0.38	47.5	15	21.1	20	90	21.5	54	42	21	6	9.5	11	10.5	5
86413-5100	$0\;\pm 100\;Nm$	2	9.85 ·10 ³	65	1.25 ·10 ⁻⁵	0.42	47.5	18	24	22	95	23.6	54	42	21	6	9.5	11	10.5	5
86413-5200	$0\;\pm200\;Nm$	2	2.80 ·10 ⁴	80	9.15 ·10 ⁻⁵	0.90	55	32	41.6	40	140	43.4	68	60	30	-	-	-	10.5	5
86413-5500	0 ± 500 Nm	2	6.33 ⋅10⁴	200	9.42 ·10 ⁻⁵	0.90	55	32	41.6	40	140	43.4	68	60	30	-	-	-	10.5	5

Dimensional drawing Models 86413 and 86413-...V501

Model 86413-...V501 Torque sensor, rotating, round shaft with keyways and internal angle measurement


Order Code	Measurement	Sensi-	Spring	Max.	Torque of	Mass	ss Dimensions [mm]														
	Range	tivity	Constant		Inertia																
				eral Force	Drive End																
			FA 1 / 17			. ,			مرما	۱ ۵	_	1		ا بر ا		١		١ _	_		-
		[mv/v]	[Nm/rad]	[N]	J in [kg m²]	[kg]	Α	В	C/G	D	Е	Н	L	K	М	N	Р	Q	R	S	Ш
86413-5001-V501	0 ± 1 Nm	0.5	2.3 ·10 ²	4	3.3 ·10 ⁻⁶	0.5	65	10	17.5	15.5	100	48.5	34	17	4	9	10.5	30.5	6.5	20	7
86413-5002-V501	0 ± 2 Nm	0.5	2.3 ·10 ²	5	3.3 ·10 ⁻⁶	0.5	65	10	17.5	15.5	100	48.5	34	17	4	9	10.5	30.5	6.5	20	7
86413-5005-V501	0 ± 5 Nm	2	2.9 ·10 ²	7	3.3 ·10⁻ ⁶	0.5	65	10	17.5	15.5	100	48.5	34	17	4	9	10.5	30.5	6.5	20	7
86413-5010-V501	0 ± 10 Nm	2	5.6 ·10 ²	7.5	1.1 ·10 ⁻⁵	0.5	65	10	17.5	15.5	100	48.5	34	17	4	9	10.5	30.5	6.5	20	7
86413-5020-V501	0 ± 20 Nm	2	1.6 ·10 ³	12	1.1 ⋅10-5	0.6	78	15	21	20	120	57	42	21	6	50	16	28	6	20	11
86413-5050-V501	0 ± 50 Nm	2	4.1 ·10 ³	28	1.1 ·10 ⁻⁵	0.6	78	15	21	20	120	57	42	21	6	50	16	28	6	20	11
86413-5100-V501	0 ± 100 Nm	2	7.9 ·10 ³	65	1.3 ⋅10-5	0.6	78	18	25	24	128	57	42	21	6	50	16	28	6	20	11
86413-5200-V501	0 ± 200 Nm	2	2.8 ⋅10⁴	80	1.0 ·10 ⁻⁴	1.3	92	32	44	40	180	70	56	28	10	66	13	43	6	20	18
86413-5500-V501	0 ± 500 Nm	2	5.3 ·10 ⁴	200	1.0 ·10-4	1.3	92	32	44	40	180	70	56	28	10	66	13	43	6	20	18

Model 86423 Torque sensor, rotating, standard hexagonal shaft ends 1/4" DIN 3126 Form E/F

U			
Order Code	Measurement	Sensi-	Mass
	Range	tivity	
		[mV/V]	[kg]
86423-5001	0 ± 1 Nm	0.5	0.2
86423-5002	0 ±2 Nm	1	0.2
86423-5005	0 ± 5 Nm	1	0.2
86423-5010	0 ± 10 Nm	2	0.2
86423-5020	0 ± 20 Nm	2	0.2

The CAD drawing (3D/2D) for this sensor can be imported online directly into your CAD system.

Download via www.burster.com or directly at www.traceparts.com. For further information about the burster traceparts cooperation refer to data sheet 80-CAD-EN.

- ▶ Drive end --- hexagon head
- ▶ Measurement side --- hexagon socket
- Quick-action chuck

Note: The max. allowed static lateral force is smaller than 10 % of the lower value of the measurement range.

General Technical Data for all Sensors

Electrical values

Torque sensor

Bridge resistance (full bridge): 350 O Excitation voltage: 2 ... 12 V DC

Characteristic: standardized 0.5 mV/V. 1mV/V or 2 mV/V (refer to tables)

Tolerance of characteristic:

 \pm 0.1 %

Test (option):

If the full bridge is connected to the positive strain gauge excitation voltage, it generates an electrical signal equivalent to 100 % of the nominal signal.

Angle displacement sensor (refer to options)

Excitation voltage: 5 V DC Angle displacement measurement: 360 pulses/rotation 2 TTL outputs with two encoders, angle displacement 90° for detection of direction.

Environmental conditions

±10 °C ... + 60 °C Range of operation temperature: ± 5 °C ... + 50 °C Range of nominal temperature:

Influence of temperature in range of nominal temperature:

to zero signal ±0.01 % F.S./K to characteristic ±0.003 % F.S./K

Mechanical values

Measurement error, consisting of non-linearity

 \leq ± 0.1 % F.S. and hysteresis Relative spread in unchanged mounting position: \leq ± 0.05 % F.S. Range of rotation:

an exceedance of the max. rotary speed, up to 1.5 x max. rotary speed, is possible only for short time

max. rotary speed for

ranges from von ≤0 ... 12 Nm 20001/min ranges from 0 ... 25 Nm to 0 ... 160 Nm 1500¹/min 0 ... 500 Nm to 0 ... 1000 Nm 1000¹/min ranges from 0 ...2000 Nm to 0... 5000 Nm 5001/min ranges from

Max. operation torque: 120 % of nominal torque Dynamic torques (peak-peak): max. 70 % of nominal torque Limit torque (static): 130 % of nominal torque Breakaway torque (static): 250 % of nominal torque

Angle displacement at nominal torque: $< 0.5^{\circ}$ Material: high strength heat-treated steel, similar to 1.2826 or 12738 Protection class: acc. to EN 60529 IP50

Dimensions: refer to table and dimensional drawing Maintenance/cleaning (contact ring abrasion, recommended change of the brushes): after approx. 5 x 107 rotations

Mechanical connection:

model 86403 Internal and external square acc. to DIN 3121, used for connection to assembling tools for bolt and nuts.

model 86413 Version with keyways on both shaft ends (2 x 180 °) acc. to DIN 6885 page 1

model 86423 Hexagon head and socket 1/4", acc. to

DIN 3126 (ISO 1173) version E/F quick-action chuck

Electrical connection:

Sensors without measurement of angle displacement

Mating connector model 9953 6 pin plug-in connection Wiring:

1 excitation negative 2 excitation positive 3 shield (not connected in the sensor)

4 positive for clockwise torques 5 output signal negative for clockwise torques

6 100 % check

Sensors with measurement of angle displacement

Mating connector model 9940 12 pin plug-in connection Wiring:

(0 V DC) excitation negative for torque В excitation positive for torque (2 ... 12 V DC)

output signal positive for clockwise torque

D output signal negative for clockwise torque (0 V DC) excitation negative for angle displ. F excitation positive for angle displ. (+ 5 V DC)

(TTL pulses) G angle output 1 Н angle output 2 (TTL pulses)

angle output (0 V DC)

K check, shunt calibration (option)

NC shield

Order Information

Torque sensor, rotating, square end measurement range 0 ... 1 Nm Model 86403-5001

Torque sensor, rotating, square end, with meas. of angle displ. Model 86403-5063-V501 measurement range 0 ... 63 Nm

Accessories

for sensors without measurement of angle displacement

Mating connector 6 pin, in scope of delivery Model 9953 Mating connector 6 pin, 90° outlet Model 9900-V589

Connection cable, one end open,

Model 99553-000A-0110030 lenath 3 m

Connection cable to burster desktop devices with

12 pin panel jack, length 3 m Model 99141-553A-0150030

Connection cable to 9235 and 9310

Model 99209-553A-0110030 lenath 3 m

Cable adapter to 9163-V3XXXX

length 0.2 m Model 99209-609A-0090002

for sensors with measurement of angle displacement

Mating connector 12 pin, in scope of delivery **Model 9940** Mating connector 12 pin, 90° outlet Model 9900-V539 Connection cable, one end open, Model 99540-000K-0270030 length 3 m Connection cable to model 9307,

length 3 m Model 99163-540C-0270030

Strain gauge simulator **Model 9405** The sensor will be replaced by the strain gauge simulator for checking amplifiers or indicators.

Supply units, amplifiers and process control units like modular amplifiers models 9243, 9206, 9163 or 9307

refer to section 9 of the catalog.

Options

Higher measurement ranges on request.

Manufacturers Calibration Certificate (WKS)

Calibration of a torque sensor with or without amplifier / indicator (measurement chain) in clockwise or / and counter clockwise direction in increments of 20 % of the measurement range.

Mounting Instructions

The sensors, particularly those with small measuring ranges, must be mounted carefully. It is important that the drive and measuring ends are not reversed during assembly. The slip-ring rotation transmitter is located on the drive side. If fitted incorrectly (measuring side and drive side swapped), its friction, which is unavoidable, will be included in the measurement.

The correct position of the measuring side is indicated on the corresponding dimensional drawing. The measuring shaft should always be cleaned prior to assembly and should be supported during fitting, to ensure that no foreign objects are sticking to it. It is recommended that the sensor is electrically connected and that the output signal is watched at the time of fitting. Vibrations originating in the equipment should be kept away from the sensor. The sensor should only be mounted on the coupling after the parts have been accurately aligned. This should be done without free play or lateral forces. It is recommended that the cable connection points upwards, so that abrasion dust cannot fall onto the brush connections.

Load Cell and Torque Sensor – X/Y/ZConfigurable up to 3x force / 3x torque

MODEL 8565 NEW

Preliminary data sheet

Highlights

- 6-axis sensor
- Measuring range Fx: 1 kN / Fy: 1 kN / Fz: 2 kN Mx: 50 Nm / My: 50 Nm / Mz: 50 Nm
- Other measuring ranges available on request
- Non-linearity < 0.1 % F.S.</p>
- Excellent price/performance ratio
- Customer-specific axis configuration

Applications

- Robot-assisted applications
- Pick & place
- Tactile sensing in manufacturing
- Collision detection
- Force-controlled machining

Strain gage output

Robot flange in accordance with DIN ISO 9049-1

Direction of action

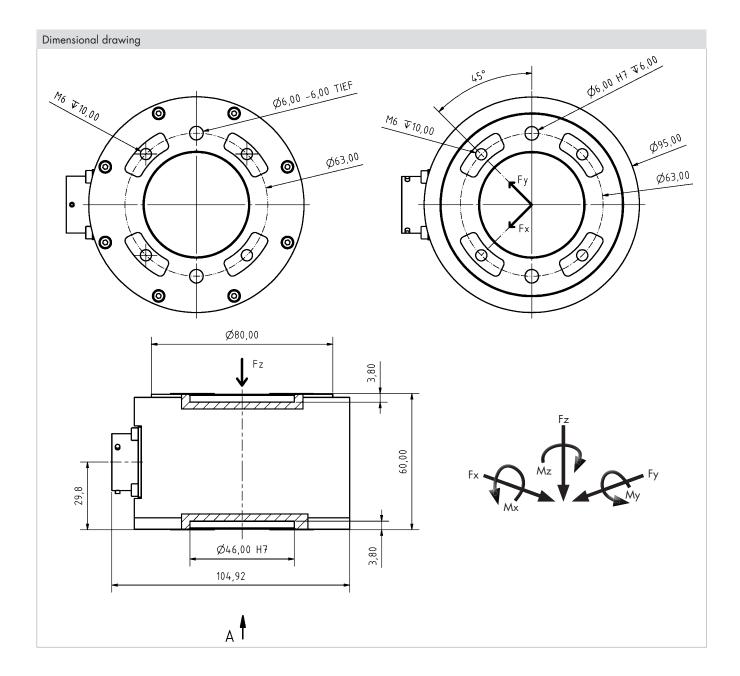
Product description

In robotics and automation engineering, the requirements for precise, tactile handling are constantly increasing. The robust 8565 multi-axis sensor with its low crosstalk enables you to monitor and evaluate your process at any time, regardless of the sensor's orientation.

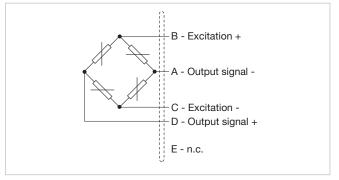
With just one sensor, you can obtain accurate three-dimensional load information. Its six independent outputs let you selectively evaluate the direction of action of the loads (axial force [Fz] / lateral forces [Fx/Fy] / torque [Mz] / bending moment [Mx/My]).

Thanks to its compact design and adaptation via the standardized robot flange in accordance with DIN ISO 9049-1, the sensor can be integrated into many applications quickly and easily.

When the slightest deviations are detected in your fast-moving and complex production processes, you can intervene immediately to make adjustments. This helps to prevent faulty parts and reduce manufacturing costs.


Technical data

8565	-	60025050							
Measuring range Fx calibrated in N from 0		$Fx = 0 \dots \pm 1 \text{ kN } (0 \dots \pm 224.8 \text{ lbs})$							
Measuring range Fy calibrated in N from 0		$Fy = 0 \dots \pm 1 \text{ kN } (0 \dots \pm 224.8 \text{ lbs})$							
Measuring range Fz calibrated in N from 0		$Fz = 0 \dots \pm 2 \text{ kN } (0 \dots \pm 449.6 \text{ lbs})$							
Measuring range Mx calibrated in Nm from 0		Mx = 0 ±50 Nm (0 ±442.51 lbs in)							
Measuring range My calibrated in Nm from 0		My = 0 ±50 Nm (0 ±442.51 lbs in)							
Measuring range Mz calibrated in Nm from 0		Mz = 0 ±50 Nm (0 ±442.51 lbs in)							
Accuracy									
Relative non-linearity *		< ±0.1 % F.S.							
Relative hysteresis		0.2 % F.S.							
Characteristic curve									
deviation*		< ±0.15 % F.S.							
Crosstalk		< 5 % from Fz to other axes (other crosstalk significantly less)							
Temperature effect on zero output		≤ ±0.02 % F.S./K							
Temperature effect on nominal sensitivity		≤ ±0.02 % F.S./K							
Electrical values									
Sensitivity (nominal) Fx:		1.2 mV/V							
Sensitivity (nominal) Fy:		1.2 mV/V							
Sensitivity (nominal) Fz:		0.4 mV/V							
Sensitivity (nominal) Mx:		1 mV/V							
Sensitivity (nominal) My:		1 mV/V							
Sensitivity (nominal) Mz:		0.9 mV/V							
Measurement direction		Positive output signal for compressive load / torque in the direction of the marked X, Y or Z axis							
Bridge resistance		$350~\Omega$ / $700~\Omega$ nominal (deviations are possible)							
Excitation voltage		5 V DC (max. 10 V DC)							
Environmental condi	tions								
Nominal temperature range		+15 °C +70 °C							
Operating temperature range		-10 °C +80 °C							
Mechanical values									
Deflection full scale		Fx and Fy < 0.04 mm $/$ Fz < 0.015 mm							
Max. operational force (Dynamic load limit 250)		$Lmax = 100 * \frac{\sqrt{Fx^2 + Fy^2}}{Fx nom.} + 50 * \frac{ Fz }{Fz nom.} + 70 * \frac{\sqrt{Mx^2 + My^2}}{Mx nom.} + 100 * \frac{ Mz }{Mz nom.} \leq 250$ Please note: The sensor's coordinate origin is in the geometric center of the sensor. When calculating the maximum operational force, the additional bending moments due to leverage effects must be taken into account for the acting lateral forces. Example: Force-controlled grinding process with simultaneous dynamic loads of up to: $Fx = 500 \text{N} / Fy = 500 \text{N} / Fz = 1.5 \text{kN} / Mx = 20 \text{N} / My = 20 \text{N} / Mz = 40 \text{N}$							
		$Lmax = 100 * \frac{\sqrt{500N^2 + 500N^2}}{1000N} + 50 * \frac{1500N}{2000N} + 70 * \frac{\sqrt{20Nm^2 + 20Nm^2}}{50Nm} + 100 * \frac{40Nm}{50Nm} = 227.80$							
Dynamic performance		recommended: 50 %							
Material		high-strength aluminum							
Protection class (EN 60529)		IP40							
Other									
Natural frequency		> 1800 Hz							
Mass	[g]	800							


Geometry	
	see dimensional drawing
Installation	
Intended mounting screws	4 x M6
Tightening torque mounting screws	10 Nm
Mounting screws	strength 8.8 or higher
Weight	800 g

Electrical termination

Output signal

burster load cells are based on a strain-gage Wheatstone bridge. This measurement principle means that the output voltage mV/V is highly dependent on the sensor supply voltage. Our website contains details of suitable instrumentation amplifiers, indicator and display devices and process instruments.

Measurement channel	A	ssignment	Pin
	Us+	Excitation (+)	Α
-	Us-	Excitation (-)	В
Fx	Um+	Measurement signal (+)	С
	Um-	Measurement signal (-)	D
	Us+	Excitation (+)	E
-	Us-	Excitation (-)	F
Fy	Um+	Measurement signal (+)	G
	Um-	Measurement signal (-)	Н
	Us+	Excitation (+)	J
F	Us-	Excitation (-)	K
Fz	Um+	Measurement signal (+)	L
	Um-	Measurement signal (-)	М
	Us+	Excitation (+)	N
	Us-	Excitation (-)	Р
Mx	Um+	Measurement signal (+)	R
	Um-	Measurement signal (-)	S
	Us+	Excitation (+)	T
	Us-	Excitation (-)	U
Му	Um+	Measurement signal (+)	V
	Um-	Measurement signal (-)	W
	Us+	Excitation (+)	Х
**	Us-	Excitation (-)	Υ
Mz	Um+	Measurement signal (+)	Z
	Um-	Measurement signal (-)	а
	N.C.	•	b
	N.C.		С

Electrical connection	
9900-V724	Souriau 26-pin connector, series 851 cable installation

Accessories

Connector, cables and devices

Order code

Connector	
9900-V724	Connector socket 26 pin (included with device)
Cables	
99724-000A-0090030	Connecting cable, 3m, 3x strain gage (Fx/Fy/Fz)
99724-000B-0090030	Connecting cable, 3m, 3x strain gage (Mx/My/Mz)
99724-000F-0090030	Connecting cable, 3m, 6x strain gage
99209-724A-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x force, length 3 m, suitable for drag chains
99209-724B-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x torque, length 3 m, suitable for drag chains
99209-724F-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x force / 3x torque, length 3 m, suitable for drag chains
Devices	
9250-VXXXXXX	Universal instrumentation amplifier
9251-VXXXX	Fieldbus controller for the 9250 instrumentation amplifier series
9236-V	In-line instrumentation amplifier for strain gage sensors
9206-V	USB sensor interface for strain gage sensors

Order Code

	Measuring r	ange					Co	ode					Meas	uring	range	
					F	z			М	Z						
F F <i>1</i>	$\begin{array}{llll} z = 0 & & \pm 2 \\ z = 0 & & \pm 1 \\ z = 0 & & \pm 1 \\ dx = 0 & & \pm 50 \\ dy = 0 & & \pm 50 \\ dx = 0 & & \pm 50 \end{array}$	kN kN Nm Nm		6	0	0	2	5	0	5	0	$Fz = 0 \dots \pm 449.6$ lbs $Fy = 0 \dots \pm 224.8$ lbs $Fx = 0 \dots \pm 224.8$ lbs $Mz = 0 \dots \pm 442.5$ lbs ii $My = 0 \dots \pm 442.5$ lbs ii $Mx = 0 \dots \pm 442.5$ lbs ii				s s in s in
															1	
8	5 6	5	_									-			0	0
Force	: Fz / Fy / Fx												0			
Force	: Fz / Fy / Fx												1			
	: Fz / Fy / Fx												2			
	: Fz / Fy / F x												3			
	: Fz / Fy / Fx												4			
	: Fz / Fy / Fx												5			
Force	: Fz / Fy / Fx												6			
Force	: Fz / Fy / Fɔ	ζ.											7			
														:		
Torqu	e: Mz / My /	М×												0		
■ Torqu	e: Mz / My /	Mx												1		
■ Torque: Mz / My / Mx											2					
■ Torque: Mz / My / Mx											3					
■ Torque: Mz / My / Mx												4				
■ Torque: Mz / My / Mx											5					
Torqu	e: Mz / My /	′ Mx												6		
Torqu	e· Mz / Mv /	M×														

Example order

Ordering example		
1x	Sensor with application 3x force / 3x torque	Type 8565-6002-5050-7700
1x	Connecting cable, open cable end, length 3 m, suitable for drag chains	Type 99209-724F-0090030
6x	Single-channel in-line instrumentation amplifier for strain gage sensors	Type 9236-V000
6x	Calibrate a measuring chain	92ABG

Note

Brochure

Our brochure "Load cells – for production automation, R&D and quality assurance" is available for download on our website or can be requested. It contains numerous applications, detailed product specifications and overviews.

Product videos

You can find our installation videos at: www.youtube.com/bursterVideo

CAD data

Download via ${\color{blue}\mathbf{www.burster.de}}$ or directly from ${\color{blue}\mathbf{www.traceparts.de}}$

COMPREHENSIVE

CUSTOMER SERVICE

OVER 60 YEARS OF EXPERIENCE AND EXPERTISE - AT YOUR SERVICE

As manufacturers of complete measurement solutions and sensor signal processing systems, we aim to offer a comprehensive service to our customers.

Our services. Your advantage. From the start. At every stage.

Our services for you:

Accredited calibration

DAkkS ISO 17025 accredited laboratory for maximum reliability, accuracy, smallest measurement uncertainties and international recognition. Important component of test equipment management under IATF 16949.

FACTORY CALIBRATION CERTIFICATE (WKS)

Compliance with requirements of the automotive, medical technology and aerospace industries for monitoring test and measurement equipment.

TEST AND CALIBRATION CERTIFICATE

For cost-effective, fast and traceable calibration.

SENSOR-AMPLIFIER CALIBRATION

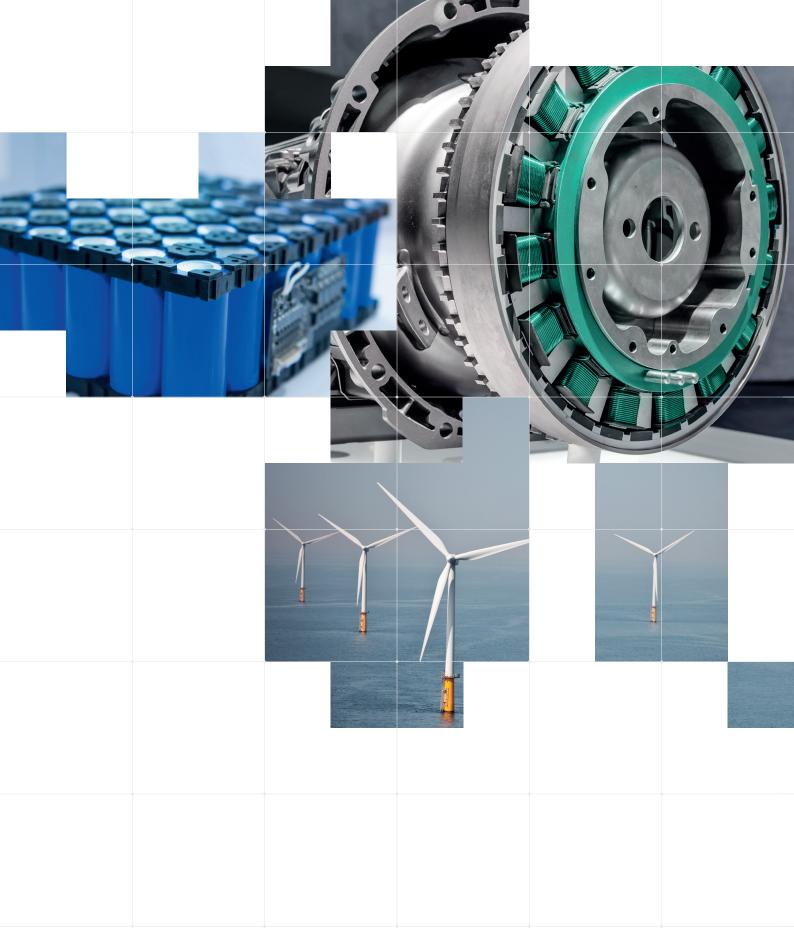
Configuration of measurement systems.

THINK GLOBAL - ACT LOCAL

Service competence at your site, supported by experts at burster HQ.

PHONE SERVICE / VIDEO CALL

Our service team is always happy to help you.


DOWNLOAD SERVICE

All documents available online 24/7.

VIDEO TUTORIALS

You can find lots of helpful tutorials on our YouTube channel.

burster praezisionsmesstechnik gmbh & co kg

Talstraße 1-5

76593 Gernsbach, GERMANY Phone: +49-7224-645-0

Email: info@burster.com

www.burster.com